Submitted manuscript, 417 KB, PDF document
Research output: Working paper
Research output: Working paper
}
TY - UNPB
T1 - Linear systems, Hankel products and the sinh-Gordon equation
AU - Blower, Gordon
AU - Doust, Ian
PY - 2022/10/13
Y1 - 2022/10/13
N2 - Let $(-A,B,C)$ be a linear system in continuous time $t>0$ with input and output space ${\mathbb C}^2$ and state space $H$. The scattering functions $\phi_{(x)}(t)=Ce^{-(t+2x)A}B$ determines a Hankel integral operator $\Gamma_{\phi_{(x)}}$; if $\Gamma_{\phi_{(x)}}$ is trace class, then the Fredholm determinant $\tau (x)=\det (I+\Gamma_{\phi_{(x)}})$ determines the tau function of $(-A,B,C)$. The paper establishes properties of algebras including $R_x=\int_x^\infty e^{-tA}BCe^{-tA}dt$ on $H$. Thus the paper obtains solutions of the sinh-Gordon PDE. The tau function for sinh-Gordon satisfies a particular Painl\'eve $\mathrm{III}'$ nonlinear ODE and describes a random matrix model, with asymptotic distribution found by the Coulomb fluid method to be the solution of an electrostatic variational problem on an interval.
AB - Let $(-A,B,C)$ be a linear system in continuous time $t>0$ with input and output space ${\mathbb C}^2$ and state space $H$. The scattering functions $\phi_{(x)}(t)=Ce^{-(t+2x)A}B$ determines a Hankel integral operator $\Gamma_{\phi_{(x)}}$; if $\Gamma_{\phi_{(x)}}$ is trace class, then the Fredholm determinant $\tau (x)=\det (I+\Gamma_{\phi_{(x)}})$ determines the tau function of $(-A,B,C)$. The paper establishes properties of algebras including $R_x=\int_x^\infty e^{-tA}BCe^{-tA}dt$ on $H$. Thus the paper obtains solutions of the sinh-Gordon PDE. The tau function for sinh-Gordon satisfies a particular Painl\'eve $\mathrm{III}'$ nonlinear ODE and describes a random matrix model, with asymptotic distribution found by the Coulomb fluid method to be the solution of an electrostatic variational problem on an interval.
KW - Sinh-Gordon equation
KW - Howland operators
KW - tau functions
KW - linear systems
M3 - Working paper
BT - Linear systems, Hankel products and the sinh-Gordon equation
ER -