Home > Research > Publications & Outputs > Localised impact of Sitka spruce (Picea sitchen...
View graph of relations

Localised impact of Sitka spruce (Picea sitchensis (Bong.) Carr.) on soil permeability.

Research output: Contribution to Journal/MagazineJournal articlepeer-review

Published

Standard

Localised impact of Sitka spruce (Picea sitchensis (Bong.) Carr.) on soil permeability. / Chappell, Nick A.; Stobbs, Adam; Ternan, J. Les et al.
In: Plant and Soil, Vol. 182, No. 1, 05.1996, p. 157-169.

Research output: Contribution to Journal/MagazineJournal articlepeer-review

Harvard

Chappell, NA, Stobbs, A, Ternan, JL & Williams, A 1996, 'Localised impact of Sitka spruce (Picea sitchensis (Bong.) Carr.) on soil permeability.', Plant and Soil, vol. 182, no. 1, pp. 157-169. https://doi.org/10.1007/BF00011004

APA

Vancouver

Chappell NA, Stobbs A, Ternan JL, Williams A. Localised impact of Sitka spruce (Picea sitchensis (Bong.) Carr.) on soil permeability. Plant and Soil. 1996 May;182(1):157-169. doi: 10.1007/BF00011004

Author

Chappell, Nick A. ; Stobbs, Adam ; Ternan, J. Les et al. / Localised impact of Sitka spruce (Picea sitchensis (Bong.) Carr.) on soil permeability. In: Plant and Soil. 1996 ; Vol. 182, No. 1. pp. 157-169.

Bibtex

@article{e2d48fb1dcef4237a4f4f1830cbb46ea,
title = "Localised impact of Sitka spruce (Picea sitchensis (Bong.) Carr.) on soil permeability.",
abstract = "A typical upland soil catena afforested with Sitka spruce (Picea sitchensis (Bong.) Carr.) was chosen to examine the localised effect of trees on soil permeability. A borehole permeameter was used to measure soil permeability at 0.2 m and approximately 2 m distance from the stem of 20 trees at a fixed measurement depth of 0.25 to 0.45 m. In the case of the near-tree measurements, this corresponded to soil beneath the main root plate of each conifer. Two principal elements of the soil catena: the ferric podzol of the mid-slope and histosol soil of the foot-slope were investigated. The preliminary data set shows that within the ferric podzol element, the permeability of the soil beneath individual conifers was a factor of 5.4 less than that of the adjacent soil. In contrast, within the histosol sub-tree permeabilities could not be distinguished from those of soil 2 m away from each tree. The decrease in sub-tree permeability within the podzol may be caused by sensitivity of the Bsl horizon to consolidation by tree weight or by enhanced illuviation resulting from changes in local soil chemistry. The histosol may be less sensitive to such processes. The results of a consolidation test applied to the Rawls and Brakensiek model of soil permeability supported the possible role of consolidation in the reduction of soil permeability beneath conifers in podzolic soil. Additional data on soil bulk density, porosity and texture are required to corroborate either the consolidation or illuviation hypotheses. As the Bsl horizon of ferric podzol soil is typically slowly permeable, a further decline may (i) restrict root development and thus, increase windthrow hazard, and (ii) increase the lateral flow of water within podzolic Eag horizons and thus affect stream acidification. Deep ploughing of a site prior to afforestation may mitigate such impacts.",
keywords = "borehole permeameter - hydraulic conducivity - podzol - sitka spruce - soil permeability",
author = "Chappell, {Nick A.} and Adam Stobbs and Ternan, {J. Les} and Andrew Williams",
year = "1996",
month = may,
doi = "10.1007/BF00011004",
language = "English",
volume = "182",
pages = "157--169",
journal = "Plant and Soil",
issn = "0032-079X",
publisher = "Springer International Publishing AG",
number = "1",

}

RIS

TY - JOUR

T1 - Localised impact of Sitka spruce (Picea sitchensis (Bong.) Carr.) on soil permeability.

AU - Chappell, Nick A.

AU - Stobbs, Adam

AU - Ternan, J. Les

AU - Williams, Andrew

PY - 1996/5

Y1 - 1996/5

N2 - A typical upland soil catena afforested with Sitka spruce (Picea sitchensis (Bong.) Carr.) was chosen to examine the localised effect of trees on soil permeability. A borehole permeameter was used to measure soil permeability at 0.2 m and approximately 2 m distance from the stem of 20 trees at a fixed measurement depth of 0.25 to 0.45 m. In the case of the near-tree measurements, this corresponded to soil beneath the main root plate of each conifer. Two principal elements of the soil catena: the ferric podzol of the mid-slope and histosol soil of the foot-slope were investigated. The preliminary data set shows that within the ferric podzol element, the permeability of the soil beneath individual conifers was a factor of 5.4 less than that of the adjacent soil. In contrast, within the histosol sub-tree permeabilities could not be distinguished from those of soil 2 m away from each tree. The decrease in sub-tree permeability within the podzol may be caused by sensitivity of the Bsl horizon to consolidation by tree weight or by enhanced illuviation resulting from changes in local soil chemistry. The histosol may be less sensitive to such processes. The results of a consolidation test applied to the Rawls and Brakensiek model of soil permeability supported the possible role of consolidation in the reduction of soil permeability beneath conifers in podzolic soil. Additional data on soil bulk density, porosity and texture are required to corroborate either the consolidation or illuviation hypotheses. As the Bsl horizon of ferric podzol soil is typically slowly permeable, a further decline may (i) restrict root development and thus, increase windthrow hazard, and (ii) increase the lateral flow of water within podzolic Eag horizons and thus affect stream acidification. Deep ploughing of a site prior to afforestation may mitigate such impacts.

AB - A typical upland soil catena afforested with Sitka spruce (Picea sitchensis (Bong.) Carr.) was chosen to examine the localised effect of trees on soil permeability. A borehole permeameter was used to measure soil permeability at 0.2 m and approximately 2 m distance from the stem of 20 trees at a fixed measurement depth of 0.25 to 0.45 m. In the case of the near-tree measurements, this corresponded to soil beneath the main root plate of each conifer. Two principal elements of the soil catena: the ferric podzol of the mid-slope and histosol soil of the foot-slope were investigated. The preliminary data set shows that within the ferric podzol element, the permeability of the soil beneath individual conifers was a factor of 5.4 less than that of the adjacent soil. In contrast, within the histosol sub-tree permeabilities could not be distinguished from those of soil 2 m away from each tree. The decrease in sub-tree permeability within the podzol may be caused by sensitivity of the Bsl horizon to consolidation by tree weight or by enhanced illuviation resulting from changes in local soil chemistry. The histosol may be less sensitive to such processes. The results of a consolidation test applied to the Rawls and Brakensiek model of soil permeability supported the possible role of consolidation in the reduction of soil permeability beneath conifers in podzolic soil. Additional data on soil bulk density, porosity and texture are required to corroborate either the consolidation or illuviation hypotheses. As the Bsl horizon of ferric podzol soil is typically slowly permeable, a further decline may (i) restrict root development and thus, increase windthrow hazard, and (ii) increase the lateral flow of water within podzolic Eag horizons and thus affect stream acidification. Deep ploughing of a site prior to afforestation may mitigate such impacts.

KW - borehole permeameter - hydraulic conducivity - podzol - sitka spruce - soil permeability

U2 - 10.1007/BF00011004

DO - 10.1007/BF00011004

M3 - Journal article

VL - 182

SP - 157

EP - 169

JO - Plant and Soil

JF - Plant and Soil

SN - 0032-079X

IS - 1

ER -