Final published version
Licence: CC BY: Creative Commons Attribution 4.0 International License
Research output: Contribution to Journal/Magazine › Journal article › peer-review
Research output: Contribution to Journal/Magazine › Journal article › peer-review
}
TY - JOUR
T1 - Longitudinal Flow Decorrelations in Xe+Xe Collisions at sNN =5.44 TeV with the ATLAS Detector
AU - The ATLAS collaboration
AU - Barton, A.E.
AU - Bertram, I.A.
AU - Borissov, G.
AU - Bouhova-Thacker, E.V.
AU - Fox, H.
AU - Henderson, R.C.W.
AU - Jones, R.W.L.
AU - Kartvelishvili, V.
AU - Long, R.E.
AU - Love, P.A.
AU - Muenstermann, D.
AU - Sanderswood, Izaac
AU - Smizanska, M.
AU - Tee, A.S.
AU - Walder, J.
AU - Wharton, A.M.
AU - Whitmore, B.W.
AU - Yexley, Melissa
PY - 2021/3/26
Y1 - 2021/3/26
N2 - The first measurement of longitudinal decorrelations of harmonic flow amplitudes vn for n=2-4 in Xe+Xe collisions at sNN=5.44 TeV is obtained using 3 μb-1 of data with the ATLAS detector at the LHC. The decorrelation signal for v3 and v4 is found to be nearly independent of collision centrality and transverse momentum (pT) requirements on final-state particles, but for v2 a strong centrality and pT dependence is seen. When compared with the results from Pb+Pb collisions at sNN=5.02 TeV, the longitudinal decorrelation signal in midcentral Xe+Xe collisions is found to be larger for v2, but smaller for v3. Current hydrodynamic models reproduce the ratios of the vn measured in Xe+Xe collisions to those in Pb+Pb collisions but fail to describe the magnitudes and trends of the ratios of longitudinal flow decorrelations between Xe+Xe and Pb+Pb. The results on the system-size dependence provide new insights and an important lever arm to separate effects of the longitudinal structure of the initial state from other early and late time effects in heavy-ion collisions. © 2021 CERN.
AB - The first measurement of longitudinal decorrelations of harmonic flow amplitudes vn for n=2-4 in Xe+Xe collisions at sNN=5.44 TeV is obtained using 3 μb-1 of data with the ATLAS detector at the LHC. The decorrelation signal for v3 and v4 is found to be nearly independent of collision centrality and transverse momentum (pT) requirements on final-state particles, but for v2 a strong centrality and pT dependence is seen. When compared with the results from Pb+Pb collisions at sNN=5.02 TeV, the longitudinal decorrelation signal in midcentral Xe+Xe collisions is found to be larger for v2, but smaller for v3. Current hydrodynamic models reproduce the ratios of the vn measured in Xe+Xe collisions to those in Pb+Pb collisions but fail to describe the magnitudes and trends of the ratios of longitudinal flow decorrelations between Xe+Xe and Pb+Pb. The results on the system-size dependence provide new insights and an important lever arm to separate effects of the longitudinal structure of the initial state from other early and late time effects in heavy-ion collisions. © 2021 CERN.
KW - Heavy ions
KW - ATLAS detectors
KW - Decorrelations
KW - Heavy ion collision
KW - Hydrodynamic model
KW - Initial state
KW - Separate effects
KW - System size dependence
KW - Transverse momenta
KW - Colliding beam accelerators
U2 - 10.1103/PhysRevLett.126.122301
DO - 10.1103/PhysRevLett.126.122301
M3 - Journal article
VL - 126
JO - Physical review letters
JF - Physical review letters
SN - 1079-7114
IS - 12
M1 - 122301
ER -