Home > Research > Publications & Outputs > Magnesium incorporation into hydroxyapatite

Text available via DOI:

View graph of relations

Magnesium incorporation into hydroxyapatite

Research output: Contribution to Journal/MagazineJournal articlepeer-review

Published
  • Danielle Laurencin
  • Neyvis Almora-Barrios
  • Nora H. de Leeuw
  • Christel Gervais
  • Christian Bonhomme
  • Francesco Mauri
  • Wojciech Chrzanowski
  • Jonathan C. Knowles
  • Robert J. Newport
  • Alan Wong
  • Zhehong Gan
  • Mark E. Smith
Close
<mark>Journal publication date</mark>2011
<mark>Journal</mark>Biomaterials
Issue number7
Volume32
Number of pages12
Pages (from-to)1826-1837
Publication StatusPublished
<mark>Original language</mark>English

Abstract

The incorporation of Mg in hydroxyapatite (HA) was investigated using multinuclear solid state NMR, X-ray absorption spectroscopy (XAS) and computational modeling. High magnetic field 43Ca solid state NMR and Ca K-edge XAS studies of a ∼10% Mg-substituted HA were performed, bringing direct evidence of the preferential substitution of Mg in the Ca(II) position. 1H and 31P solid state NMR show that the environment of the anions is disordered in this substituted apatite phase. Both Density Functional Theory (DFT) and interatomic potential computations of Mg-substituted HA structures are in agreement with these observations. Indeed, the incorporation of low levels of Mg in the Ca(II) site is found to be more favourable energetically, and the NMR parameters calculated from these optimized structures are consistent with the experimental data. Calculations provide direct insight in the structural modifications of the HA lattice, due to the strong contraction of the M⋯O distances around Mg. Finally, extensive interatomic potential calculations also suggest that a local clustering of Mg within the HA lattice is likely to occur. Such structural characterizations of Mg environments in apatites will favour a better understanding of the biological role of this cation.