Research output: Contribution to Journal/Magazine › Journal article › peer-review
Research output: Contribution to Journal/Magazine › Journal article › peer-review
}
TY - JOUR
T1 - Magnesium incorporation into hydroxyapatite
AU - Laurencin, Danielle
AU - Almora-Barrios, Neyvis
AU - Leeuw, Nora H. de
AU - Gervais, Christel
AU - Bonhomme, Christian
AU - Mauri, Francesco
AU - Chrzanowski, Wojciech
AU - Knowles, Jonathan C.
AU - Newport, Robert J.
AU - Wong, Alan
AU - Gan, Zhehong
AU - Smith, Mark E.
PY - 2011
Y1 - 2011
N2 - The incorporation of Mg in hydroxyapatite (HA) was investigated using multinuclear solid state NMR, X-ray absorption spectroscopy (XAS) and computational modeling. High magnetic field 43Ca solid state NMR and Ca K-edge XAS studies of a ∼10% Mg-substituted HA were performed, bringing direct evidence of the preferential substitution of Mg in the Ca(II) position. 1H and 31P solid state NMR show that the environment of the anions is disordered in this substituted apatite phase. Both Density Functional Theory (DFT) and interatomic potential computations of Mg-substituted HA structures are in agreement with these observations. Indeed, the incorporation of low levels of Mg in the Ca(II) site is found to be more favourable energetically, and the NMR parameters calculated from these optimized structures are consistent with the experimental data. Calculations provide direct insight in the structural modifications of the HA lattice, due to the strong contraction of the M⋯O distances around Mg. Finally, extensive interatomic potential calculations also suggest that a local clustering of Mg within the HA lattice is likely to occur. Such structural characterizations of Mg environments in apatites will favour a better understanding of the biological role of this cation.
AB - The incorporation of Mg in hydroxyapatite (HA) was investigated using multinuclear solid state NMR, X-ray absorption spectroscopy (XAS) and computational modeling. High magnetic field 43Ca solid state NMR and Ca K-edge XAS studies of a ∼10% Mg-substituted HA were performed, bringing direct evidence of the preferential substitution of Mg in the Ca(II) position. 1H and 31P solid state NMR show that the environment of the anions is disordered in this substituted apatite phase. Both Density Functional Theory (DFT) and interatomic potential computations of Mg-substituted HA structures are in agreement with these observations. Indeed, the incorporation of low levels of Mg in the Ca(II) site is found to be more favourable energetically, and the NMR parameters calculated from these optimized structures are consistent with the experimental data. Calculations provide direct insight in the structural modifications of the HA lattice, due to the strong contraction of the M⋯O distances around Mg. Finally, extensive interatomic potential calculations also suggest that a local clustering of Mg within the HA lattice is likely to occur. Such structural characterizations of Mg environments in apatites will favour a better understanding of the biological role of this cation.
KW - Magnesium
KW - Hydroxyapatite
KW - Nuclear magnetic resonance spectroscopy
KW - X-ray spectroscopy
U2 - 10.1016/j.biomaterials.2010.11.017
DO - 10.1016/j.biomaterials.2010.11.017
M3 - Journal article
VL - 32
SP - 1826
EP - 1837
JO - Biomaterials
JF - Biomaterials
IS - 7
ER -