Rights statement: © 2014 CERN, for the ATLAS Collaboration
Final published version, 1.54 MB, PDF document
Available under license: CC BY
Research output: Contribution to Journal/Magazine › Journal article › peer-review
Research output: Contribution to Journal/Magazine › Journal article › peer-review
}
TY - JOUR
T1 - Measurement of Higgs boson production in the diphoton decay channel in pp collisions at center-of-mass energies of 7 and 8 TeV with the ATLAS detector
AU - Allison, Lee
AU - Barton, Adam
AU - Beattie, Michael
AU - Borissov, Guennadi
AU - Bouhova-Thacker, Eva
AU - Chilingarov, Alexandre
AU - Dearnaley, William
AU - Fox, Harald
AU - Grimm, Kathryn
AU - Henderson, Robert
AU - Hughes, Gareth
AU - Jones, Roger William Lewis
AU - Kartvelishvili, Vakhtang
AU - Long, Robin
AU - Love, Peter
AU - Maddocks, Harvey
AU - Smizanska, Maria
AU - Walder, James
AU - The ATLAS collaboration
N1 - © 2014 CERN, for the ATLAS Collaboration
PY - 2014/12/24
Y1 - 2014/12/24
N2 - A measurement of the production processes of the recently discovered Higgs boson is performed in the two-photon final state using 4.5 fb−1 of proton-proton collisions data at s√=7 TeV and 20.3 fb−1 at s√=8 TeV collected by the ATLAS detector at the Large Hadron Collider. The number of observed Higgs boson decays to diphotons divided by the corresponding Standard Model prediction, called the signal strength, is found to be μ=1.17±0.27 at the value of the Higgs boson mass measured by ATLAS, mH=125.4 GeV. The analysis is optimized to measure the signal strengths for individual Higgs boson production processes at this value of mH. They are found to be μggF=1.32±0.38, μVBF=0.8±0.7, μWH=1.0±1.6, μZH=0.1+3.7−0.1, and μtt¯H=1.6+2.7−1.8, for Higgs boson production through gluon fusion, vector-boson fusion, and in association with a W or Z boson or a top-quark pair, respectively. Compared with the previously published ATLAS analysis, the results reported here also benefit from a new energy calibration procedure for photons and the subsequent reduction of the systematic uncertainty on the diphoton mass resolution. No significant deviations from the predictions of the Standard Model are found.
AB - A measurement of the production processes of the recently discovered Higgs boson is performed in the two-photon final state using 4.5 fb−1 of proton-proton collisions data at s√=7 TeV and 20.3 fb−1 at s√=8 TeV collected by the ATLAS detector at the Large Hadron Collider. The number of observed Higgs boson decays to diphotons divided by the corresponding Standard Model prediction, called the signal strength, is found to be μ=1.17±0.27 at the value of the Higgs boson mass measured by ATLAS, mH=125.4 GeV. The analysis is optimized to measure the signal strengths for individual Higgs boson production processes at this value of mH. They are found to be μggF=1.32±0.38, μVBF=0.8±0.7, μWH=1.0±1.6, μZH=0.1+3.7−0.1, and μtt¯H=1.6+2.7−1.8, for Higgs boson production through gluon fusion, vector-boson fusion, and in association with a W or Z boson or a top-quark pair, respectively. Compared with the previously published ATLAS analysis, the results reported here also benefit from a new energy calibration procedure for photons and the subsequent reduction of the systematic uncertainty on the diphoton mass resolution. No significant deviations from the predictions of the Standard Model are found.
U2 - 10.1103/PhysRevD.90.112015
DO - 10.1103/PhysRevD.90.112015
M3 - Journal article
VL - 90
JO - Physical Review D
JF - Physical Review D
SN - 1550-7998
IS - 11
M1 - 112015
ER -