Final published version
Licence: CC BY: Creative Commons Attribution 4.0 International License
Research output: Contribution to Journal/Magazine › Journal article › peer-review
Research output: Contribution to Journal/Magazine › Journal article › peer-review
}
TY - JOUR
T1 - Measurement of single top-quark production in the s-channel in proton–proton collisions at √s = 13 TeV with the ATLAS detector
AU - The ATLAS collaboration
AU - Barton, A.E.
AU - Bertram, I.A.
AU - Borissov, G.
AU - Bouhova-Thacker, E.V.
AU - Fox, H.
AU - Henderson, R.C.W.
AU - Jones, R.W.L.
AU - Kartvelishvili, V.
AU - Love, P.A.
AU - Meng, L.
AU - Muenstermann, D.
AU - Rybacki, K.
AU - Smizanska, M.
AU - Spinali, S.
AU - Wharton, A.M.
AU - Yexley, Melissa
PY - 2023/6/27
Y1 - 2023/6/27
N2 - A measurement of single top-quark production in the s-channel is performed in proton–proton collisions at a centre-of-mass energy of 13 TeV with the ATLAS detector at the CERN Large Hadron Collider. The dataset corresponds to an integrated luminosity of 139 fb−1. The analysis is performed on events with an electron or muon, missing transverse momentum and exactly two b-tagged jets in the final state. A discriminant based on matrix element calculations is used to separate single-top-quark s-channel events from the main background contributions, which are top-quark pair production and W-boson production in association with jets. The observed (expected) signal significance over the background-only hypothesis is 3.3 (3.9) standard deviations, and the measured cross-section is σ=8.2+3.5−2.9 pb, consistent with the Standard Model prediction of σSM=10.32+0.40−0.36 pb.
AB - A measurement of single top-quark production in the s-channel is performed in proton–proton collisions at a centre-of-mass energy of 13 TeV with the ATLAS detector at the CERN Large Hadron Collider. The dataset corresponds to an integrated luminosity of 139 fb−1. The analysis is performed on events with an electron or muon, missing transverse momentum and exactly two b-tagged jets in the final state. A discriminant based on matrix element calculations is used to separate single-top-quark s-channel events from the main background contributions, which are top-quark pair production and W-boson production in association with jets. The observed (expected) signal significance over the background-only hypothesis is 3.3 (3.9) standard deviations, and the measured cross-section is σ=8.2+3.5−2.9 pb, consistent with the Standard Model prediction of σSM=10.32+0.40−0.36 pb.
U2 - 10.1007/JHEP06(2023)191
DO - 10.1007/JHEP06(2023)191
M3 - Journal article
VL - 2023
JO - Journal of High Energy Physics
JF - Journal of High Energy Physics
SN - 1029-8479
IS - 6
M1 - 191
ER -