Final published version
Research output: Contribution to Journal/Magazine › Journal article › peer-review
Research output: Contribution to Journal/Magazine › Journal article › peer-review
}
TY - JOUR
T1 - Measurement of the cross section for isolated-photon plus jet production in pp collisions at √s=13 TeV using the ATLAS detector
AU - Barton, Adam Edward
AU - Beattie, Michael
AU - Bertram, Iain Alexander
AU - Borissov, Guennadi
AU - Bouhova-Thacker, Evelina Vassileva
AU - Fox, Harald
AU - Henderson, Robert Charles William
AU - Jones, Roger William Lewis
AU - Kartvelishvili, Vakhtang
AU - Long, Robin Eamonn
AU - Love, Peter Allan
AU - Muenstermann, Daniel Matthias Alfred
AU - Parker, Adam Jackson
AU - Skinner, Malcolm
AU - Smizanska, Maria
AU - Walder, James William
AU - Wharton, Andrew Mark
AU - Whitmore, Ben
AU - The ATLAS collaboration
PY - 2018/5/10
Y1 - 2018/5/10
N2 - The dynamics of isolated-photon production in association with a jet in proton–proton collisions at a centre-of-mass energy of 13 TeV are studied with the ATLAS detector at the LHC using a dataset with an integrated luminosity of 3.2fb−1. Photons are required to have transverse energies above 125 GeV. Jets are identified using the anti-kt algorithm with radius parameter R=0.4 and required to have transverse momenta above 100 GeV. Measurements of isolated-photon plus jet cross sections are presented as functions of the leading-photon transverse energy, the leading-jet transverse momentum, the azimuthal angular separation between the photon and the jet, the photon–jet invariant mass and the scattering angle in the photon–jet centre-of-mass system. Tree-level plus parton-shower predictions from Sherpa and Pythia as well as next-to-leading-order QCD predictions from Jetphox and Sherpa are compared to the measurements.
AB - The dynamics of isolated-photon production in association with a jet in proton–proton collisions at a centre-of-mass energy of 13 TeV are studied with the ATLAS detector at the LHC using a dataset with an integrated luminosity of 3.2fb−1. Photons are required to have transverse energies above 125 GeV. Jets are identified using the anti-kt algorithm with radius parameter R=0.4 and required to have transverse momenta above 100 GeV. Measurements of isolated-photon plus jet cross sections are presented as functions of the leading-photon transverse energy, the leading-jet transverse momentum, the azimuthal angular separation between the photon and the jet, the photon–jet invariant mass and the scattering angle in the photon–jet centre-of-mass system. Tree-level plus parton-shower predictions from Sherpa and Pythia as well as next-to-leading-order QCD predictions from Jetphox and Sherpa are compared to the measurements.
U2 - 10.1016/j.physletb.2018.03.035
DO - 10.1016/j.physletb.2018.03.035
M3 - Journal article
VL - 780
SP - 578
EP - 602
JO - Physics Letters B
JF - Physics Letters B
SN - 0370-2693
ER -