Final published version
Research output: Contribution to Journal/Magazine › Journal article › peer-review
Research output: Contribution to Journal/Magazine › Journal article › peer-review
}
TY - JOUR
T1 - Measurement of the production cross-section of a single top quark in association with a Z boson in proton–proton collisions at 13 TeV with the ATLAS detector
AU - Barton, Adam Edward
AU - Beattie, Michael
AU - Bertram, Iain Alexander
AU - Borissov, Guennadi
AU - Bouhova-Thacker, Evelina Vassileva
AU - Fox, Harald
AU - Henderson, Robert Charles William
AU - Jones, Roger William Lewis
AU - Kartvelishvili, Vakhtang
AU - Long, Robin Eamonn
AU - Love, Peter Allan
AU - Muenstermann, Daniel Matthias Alfred
AU - Parker, Adam Jackson
AU - Skinner, Malcolm
AU - Smizanska, Maria
AU - Walder, James William
AU - Wharton, Andrew Mark
AU - Whitmore, Ben
AU - The ATLAS collaboration
PY - 2018/5/10
Y1 - 2018/5/10
N2 - The production of a top quark in association with a Z boson is investigated. The proton–proton collision data collected by the ATLAS experiment at the LHC in 2015 and 2016 at a centre-of-mass energy of √s=13 TeV are used, corresponding to an integrated luminosity of 36.1fb−1. Events containing three identified leptons (electrons and/or muons) and two jets, one of which is identified as a b-quark jet are selected. The major backgrounds are diboson, tt¯ and Z+ jets production. A neural network is used to improve the background rejection and extract the signal. The resulting significance is 4.2σ in the data and the expected significance is 5.4σ. The measured cross-section for tZq production is 600±170 (stat.)±140 (syst.) fb.
AB - The production of a top quark in association with a Z boson is investigated. The proton–proton collision data collected by the ATLAS experiment at the LHC in 2015 and 2016 at a centre-of-mass energy of √s=13 TeV are used, corresponding to an integrated luminosity of 36.1fb−1. Events containing three identified leptons (electrons and/or muons) and two jets, one of which is identified as a b-quark jet are selected. The major backgrounds are diboson, tt¯ and Z+ jets production. A neural network is used to improve the background rejection and extract the signal. The resulting significance is 4.2σ in the data and the expected significance is 5.4σ. The measured cross-section for tZq production is 600±170 (stat.)±140 (syst.) fb.
U2 - 10.1016/j.physletb.2018.03.023
DO - 10.1016/j.physletb.2018.03.023
M3 - Journal article
VL - 780
SP - 557
EP - 577
JO - Physics Letters B
JF - Physics Letters B
SN - 0370-2693
ER -