Final published version
Licence: CC BY: Creative Commons Attribution 4.0 International License
Research output: Contribution to Journal/Magazine › Journal article › peer-review
Research output: Contribution to Journal/Magazine › Journal article › peer-review
}
TY - JOUR
T1 - Measurements of jet cross-section ratios in 13 TeV proton-proton collisions with ATLAS
AU - The ATLAS collaboration
AU - Ali, Hanadi
AU - Barton, A.E.
AU - Borissov, G.
AU - Bouhova-Thacker, E.V.
AU - Ferguson, Ruby
AU - Ferrando, James
AU - Fox, H.
AU - Hagan, Alina
AU - Henderson, R.C.W.
AU - Jones, R.W.L.
AU - Kartvelishvili, V.
AU - Love, P.A.
AU - Marshall, E.J.
AU - Meng, L.
AU - Muenstermann, D.
AU - Ribaric, N.
AU - Rybacki, K.
AU - Sampson, Elliot
AU - Smizanska, M.
AU - Spinali, S.
AU - Wharton, A.M.
PY - 2024/10/1
Y1 - 2024/10/1
N2 - Measurements of jet cross-section ratios between inclusive bins of jet multiplicity are performed in 140 fb−1 of proton-proton collisions with s=13 TeV center-of-mass energy, recorded with the ATLAS detector at CERN’s Large Hadron Collider. These ratios are constructed from double-differential cross-section measurements that are made in bins of jet multiplicity and other observables that are sensitive the energy scale and angular distribution of radiation due to the strong interaction in the final state. Additionally, the scalar sum of the two leading jets’ transverse momenta is measured triple differentially, in bins of the third jet’s transverse momentum and of jet multiplicity. These measurements are unfolded to account for acceptance and detector-related effects. The measured distributions are used to construct ratios of the inclusive jet-multiplicity bins, which have been shown to be sensitive to the strong coupling αS while being less sensitive than other observables to systematic uncertainties and parton distribution functions. The measured distributions are compared with state-of-the-art QCD calculations, including next-to-next-to-leading-order predictions for two- and three-jet events. These predictions are generally found to model the data well and perform best in bins with a modest requirement on the third jet’s transverse momentum. Significant differences between data and Monte Carlo predictions are observed in events with large rapidity gaps and invariant masses of the leading jet pair. Studies leading to reduced jet energy scale uncertainties significantly improve the precision of this work and are documented herein. © 2024 CERN, for the ATLAS Collaboration 2024 CERN
AB - Measurements of jet cross-section ratios between inclusive bins of jet multiplicity are performed in 140 fb−1 of proton-proton collisions with s=13 TeV center-of-mass energy, recorded with the ATLAS detector at CERN’s Large Hadron Collider. These ratios are constructed from double-differential cross-section measurements that are made in bins of jet multiplicity and other observables that are sensitive the energy scale and angular distribution of radiation due to the strong interaction in the final state. Additionally, the scalar sum of the two leading jets’ transverse momenta is measured triple differentially, in bins of the third jet’s transverse momentum and of jet multiplicity. These measurements are unfolded to account for acceptance and detector-related effects. The measured distributions are used to construct ratios of the inclusive jet-multiplicity bins, which have been shown to be sensitive to the strong coupling αS while being less sensitive than other observables to systematic uncertainties and parton distribution functions. The measured distributions are compared with state-of-the-art QCD calculations, including next-to-next-to-leading-order predictions for two- and three-jet events. These predictions are generally found to model the data well and perform best in bins with a modest requirement on the third jet’s transverse momentum. Significant differences between data and Monte Carlo predictions are observed in events with large rapidity gaps and invariant masses of the leading jet pair. Studies leading to reduced jet energy scale uncertainties significantly improve the precision of this work and are documented herein. © 2024 CERN, for the ATLAS Collaboration 2024 CERN
U2 - 10.1103/physrevd.110.072019
DO - 10.1103/physrevd.110.072019
M3 - Journal article
VL - 110
JO - Physical Review D
JF - Physical Review D
SN - 2470-0010
IS - 7
M1 - 072019
ER -