Home > Research > Publications & Outputs > Mechanically robust cylindrical metal terahertz...

Electronic data

  • Mitrofanov_Mechanically robust cylindrical metal terahertz waveguides for cryogenic applications

    Rights statement: Robert Wallis, Riccardo Degl'Innocenti, Oleg Mitrofanov, Joanna Waldie, Carlos M. Bledt, Jeffrey E. Melzer, James A. Harrington, Harvey E. Beere, David A. Ritchie, "Mechanically robust cylindrical metal terahertz waveguides for cryogenic applications", Proc. SPIE 10103, Terahertz, RF, Millimeter, and Submillimeter-Wave Technology and Applications X, 1010307 (24 February 2017); doi: 10.1117/12.2250530; http://dx.doi.org/10.1117/12.2250530 Copyright notice format: Copyright 2017 Society of Photo-Optical Instrumentation Engineers. One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper are prohibited. DOI abstract link format: http://dx.doi.org/10.1117/12.2250530

    Final published version, 1 MB, PDF document

    Available under license: CC BY-NC: Creative Commons Attribution-NonCommercial 4.0 International License

Links

Text available via DOI:

View graph of relations

Mechanically robust cylindrical metal terahertz waveguides for cryogenic applications

Research output: Contribution to Journal/MagazineJournal articlepeer-review

Published
  • Robert Wallis
  • Riccardo Degl'Innocenti
  • Oleg Mitrofanov
  • Joanna Waldie
  • Carlos M. Bledt
  • Jeffrey E. Melzer
  • James A. Harrington
  • Harvey E. Beere
  • David A. Ritchie
Close
Article number1010307
<mark>Journal publication date</mark>24/02/2017
<mark>Journal</mark>Proceedings of SPIE
Volume10103
Number of pages9
Publication StatusPublished
<mark>Original language</mark>English
Event2017 Terahertz, RF, Millimeter, and Submillimeter-Wave Technology and Applications VII Conference - San Francisco, United States
Duration: 30/01/20172/02/2017

Conference

Conference2017 Terahertz, RF, Millimeter, and Submillimeter-Wave Technology and Applications VII Conference
Country/TerritoryUnited States
CitySan Francisco
Period30/01/172/02/17

Abstract

As the ambition behind THz quantum cascade laser based applications continues to grow, abandoning free-space optics in favor of waveguided systems promises major improvements in targeted, easy to align, and robust radiation delivery. This is especially true in cryogenic environments, where illumination is traditionally challenging. Although the field of THz waveguides is rapidly developing, most designs have limitations in terms of mechanical stability at low temperatures, and are costly and complicated to fabricate to lengths > 1 m. In this work, we investigate readily available cylindrical metal waveguides which are suitable for effective power delivery in cryogenic environments, and explore the optimal dimensions and materials available. The materials chosen were extruded un-annealed and annealed copper, as well as stainless steel, with bore diameters of 1.75, 2.5, and 4.6 mm. Measurements were performed at three different frequencies, 2.0, 2.85 and 3.2 THz, with optimal transmission losses 1, and forms a comprehensive investigation of cryogenically compatible THz waveguides and optical couplers, paving the way for a new generation of systems to utilize THz QCLs for a host of low-temperature investigations.

Bibliographic note

Robert Wallis, Riccardo Degl'Innocenti, Oleg Mitrofanov, Joanna Waldie, Carlos M. Bledt, Jeffrey E. Melzer, James A. Harrington, Harvey E. Beere, David A. Ritchie, "Mechanically robust cylindrical metal terahertz waveguides for cryogenic applications", Proc. SPIE 10103, Terahertz, RF, Millimeter, and Submillimeter-Wave Technology and Applications X, 1010307 (24 February 2017); doi: 10.1117/12.2250530; http://dx.doi.org/10.1117/12.2250530 Copyright notice format: Copyright 2017 Society of Photo-Optical Instrumentation Engineers. One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper are prohibited. DOI abstract link format: http://dx.doi.org/10.1117/12.2250530