Accepted author manuscript, 452 KB, PDF document
Available under license: CC BY-NC: Creative Commons Attribution-NonCommercial 4.0 International License
Final published version
Research output: Contribution in Book/Report/Proceedings - With ISBN/ISSN › Conference contribution/Paper › peer-review
Research output: Contribution in Book/Report/Proceedings - With ISBN/ISSN › Conference contribution/Paper › peer-review
}
TY - GEN
T1 - Metric learning for simulation analytics
AU - Laidler, Graham
AU - Morgan, Lucy
AU - Nelson, Barry
AU - Pavlidis, Nicos
PY - 2020/12/18
Y1 - 2020/12/18
N2 - The sample path generated by a stochastic simulation often exhibits significant variability within each replication, revealing periods of good and poor performance alike. As such, traditional summaries of aggregate performance measures overlook the more fine-grained insights into the operational system behavior. In this paper, we take a simulation analytics view of output analysis, turning to machine learning methods to uncover key insights from the dynamic sample path. We present a k nearest neighbors model on system state information to facilitate real-time predictions of a stochastic performance measure. This model is built on the premise of a system-specific measure of similarity between observations of the state, which we inform via metric learning. An evaluation of our approach is provided on a stochastic activity network and a wafer fabrication facility, both of which give us confidence in the ability of metric learning to provide interpretation and improved predictive performance.
AB - The sample path generated by a stochastic simulation often exhibits significant variability within each replication, revealing periods of good and poor performance alike. As such, traditional summaries of aggregate performance measures overlook the more fine-grained insights into the operational system behavior. In this paper, we take a simulation analytics view of output analysis, turning to machine learning methods to uncover key insights from the dynamic sample path. We present a k nearest neighbors model on system state information to facilitate real-time predictions of a stochastic performance measure. This model is built on the premise of a system-specific measure of similarity between observations of the state, which we inform via metric learning. An evaluation of our approach is provided on a stochastic activity network and a wafer fabrication facility, both of which give us confidence in the ability of metric learning to provide interpretation and improved predictive performance.
M3 - Conference contribution/Paper
SP - 349
EP - 360
BT - Proceedings of the 2020 Winter Simulation Conference
PB - IEEE
ER -