Home > Research > Publications & Outputs > Mid-infrared interband cascade light-emitting d...
View graph of relations

Mid-infrared interband cascade light-emitting diodes with InAs/GaAßb superlattices on InAs substrates: Smart Photonic and Optoelectronic Integrated Circuits XXII 2020

Research output: Contribution to conference - Without ISBN/ISSN Conference paperpeer-review

Published

Standard

Mid-infrared interband cascade light-emitting diodes with InAs/GaAßb superlattices on InAs substrates: Smart Photonic and Optoelectronic Integrated Circuits XXII 2020. / Lu, Q.; Zhou, Y.; Chen, J. et al.
2020. Paper presented at Smart Photonic and Optoelectronic Integrated Circuits XXII, San Francisco, California, United States.

Research output: Contribution to conference - Without ISBN/ISSN Conference paperpeer-review

Harvard

Lu, Q, Zhou, Y, Chen, J, He, L, Krier, A, S., H (ed.), L., V (ed.) & (SPIE), TSOP-OIE 2020, 'Mid-infrared interband cascade light-emitting diodes with InAs/GaAßb superlattices on InAs substrates: Smart Photonic and Optoelectronic Integrated Circuits XXII 2020', Paper presented at Smart Photonic and Optoelectronic Integrated Circuits XXII, San Francisco, United States, 1/02/20 - 6/02/20. https://doi.org/10.1117/12.2544811

APA

Lu, Q., Zhou, Y., Chen, J., He, L., Krier, A., S., H. (Ed.), L., V. (Ed.), & (SPIE), T. S. O. P-O. I. E. (2020). Mid-infrared interband cascade light-emitting diodes with InAs/GaAßb superlattices on InAs substrates: Smart Photonic and Optoelectronic Integrated Circuits XXII 2020. Paper presented at Smart Photonic and Optoelectronic Integrated Circuits XXII, San Francisco, California, United States. https://doi.org/10.1117/12.2544811

Vancouver

Lu Q, Zhou Y, Chen J, He L, Krier A, S. H, (ed.) et al.. Mid-infrared interband cascade light-emitting diodes with InAs/GaAßb superlattices on InAs substrates: Smart Photonic and Optoelectronic Integrated Circuits XXII 2020. 2020. Paper presented at Smart Photonic and Optoelectronic Integrated Circuits XXII, San Francisco, California, United States. doi: 10.1117/12.2544811

Author

Lu, Q. ; Zhou, Y. ; Chen, J. et al. / Mid-infrared interband cascade light-emitting diodes with InAs/GaAßb superlattices on InAs substrates : Smart Photonic and Optoelectronic Integrated Circuits XXII 2020. Paper presented at Smart Photonic and Optoelectronic Integrated Circuits XXII, San Francisco, California, United States.

Bibtex

@conference{c65043c5c2284428877b6ac92a13acd7,
title = "Mid-infrared interband cascade light-emitting diodes with InAs/GaA{\ss}b superlattices on InAs substrates: Smart Photonic and Optoelectronic Integrated Circuits XXII 2020",
abstract = "In this work, we report interband cascade light emitting diodes (ICLEDs) based on InAs/GaA{\ss}b superlattices emitting around 4.5 μm The ICLED structures were grown on InAs substrates by molecular beam epitaxy, which were composed of InAs/GaA{\ss}b superlattice emitters, InAs/AlA{\ss}b multi-quantum well (MQW) injection regions, and the GaA{\ss}b/AlA{\ss}b MQW tunneling regions. Both 5-stage and 2-stage ICLEDs were fabricated. The devices exhibited high output power, low series resistance and high wall-plug efficiency (WPE). At room temperature, radiances of 0.36 W/cm 2 sr and 0.19 W/cm 2 sr were achieved from the 5-stage and 2-stage ICLEDs respectively. At 80 K, the output power from the 5-stage ICLED reached 3.56 mW with 350 mA injection current, resulting in a WPE of around 0.5%. The efficiency was largely maintained with increasing injection. The thermal quenching of these ICLEDs from 20 K to 300 K was also significantly le{\ss} than other types of devices emitting at similar wavelengths. These results demonstrate that ICLEDs have great potential for mid-infrared light emitting diode applications requiring large output power and high wall-plug efficiency. ",
keywords = "Interband cascade structures, Mid-infrared LEDs, Diodes, Efficiency, Electric resistance, Gallium compounds, Infrared devices, Light emitting diodes, Molecular beam epitaxy, Photonic integration technology, Semiconductor quantum wells, Substrates, Injection currents, Interband cascade structure, Interband cascades, Midinfrared, Multiquantum wells, Series resistances, Thermal quenching, Wallplug efficiency, III-V semiconductors",
author = "Q. Lu and Y. Zhou and J. Chen and L. He and A. Krier and He S. and Vivien L. and (SPIE), {The Society of Photo-Optical Instrumentation Engineers}",
note = "Conference code: 158515 Export Date: 16 April 2020 CODEN: PSISD Correspondence Address: Lu, Q.; Physics Department, Lancaster UniversityUnited Kingdom; email: q.lu3@lancaster.ac.uk Funding details: Engineering and Physical Sciences Research Council, EPSRC, EP/P012035/1 Funding text 1: This work was supported by the EPSRC Grant of UK (No. EP/P012035/1). References: Krier, A., Yin, M., Smirnov, V., Batty, P., Carrington, P.J., Solovev, V., Sherstnev, V., The development of room temperature LEDs and lasers for the mid-infrared spectral range (2008) Phys. Status Solidi, 205 (1), pp. 129-143; Yang, R.Q., Infrared laser based on intersubband transitions in quantum wells (1995) Superlattices Microstruct, 17 (1), pp. 77-80; Lotfi, H., Li, L., Lei, L., Jiang, Y., Yang, R.Q., Klem, J.F., Johnson, M.B., Short-wavelength interband cascade infrared photodetectors operating above room temperature (2016) J. Appl. Phys, 119, p. 023105; Lei, L., Li, L., Huang, W., Massengale, J.A., Ye, H., Lotfi, H., Yang, R.Q., Johnson, M.B., Resonant tunneling and multiple negative differential conductance features in long wavelength interband cascade infrared photodetectors (2017) Appl. Phys. Lett, 111, p. 113504; Lotfi, H., Li, L., Ye, H., Hinkey, R.T., Lei, L., Yang, R.Q., Keay, J.C., Johnson, M.B., Interband cascade infrared photodetectors with long and very-long cutoff wavelengths (2015) Infrared Phys. Technol, 70, pp. 162-167; Lotfi, H., Li, L., Lei, L., Yang, R.Q., Klem, J.F., Johnson, M.B., Narrow-bandgap interband cascade thermophotovoltaic cells (2017) IEEE J. Photovoltaics, 7 (5), pp. 1462-1468; Ermolaev, M., Lin, Y., Shterengas, L., Hosoda, T., Kipshidze, G., Suchalkin, S., Belenky, G., GaSb-based type-i quantum well 3-3. 5 um cascade light emitting diodes (2018) IEEE Photonics Technol. Lett, 30 (9), pp. 869-872; Kim, C.S., Kim, M., Bewley, W.W., Merritt, C.D., Canedy, C.L., Warren, M.V., Vurgaftman, I., Meyer, J.R., Mid-infrared interband cascade light-emitting devices with improved radiance (2018) Proc. SPIE, p. 10540; Ricker, R.J., Provence, S.R., Norton, D.T., Boggess, T.F., Prineas, J.P., Broadband mid-infrared superlattice light-emitting diodes (2017) J. Appl. Phys, 121, p. 185701; Muhowski, A.J., Ricker, R.J., Boggess, T.F., Prineas, J.P., N-type anode layer, high-power MWIR superlattice LED (2017) Appl. Phys. Lett, 111, p. 243509; Prineas, J.P., Ricker, R.J., Muhowski, A., Bogh, C., Provence, S., Boggess, T.F., Cascading, efficiency, and broadband emission in mid-infrared superlattice light emitting diodes (SLEDs) (2017) Proc. SPIE, p. 10124; Murray, L.M., Norton, D.T., Olesberg, J.T., Boggess, T.F., Prineas, J.P., Comparison of tunnel junctions for cascaded InAs/GaSb superlattice light emitting diodes (2012) J. Vac. Sci. Technol. B, 30 (2), p. 021203; Prineas, J.P., Olesberg, J.T., Yager, J.R., Cao, C., Coretsopoulos, C., Reddy, M.H.M., Cascaded active regions in 2. 4m GaInAsSb light-emitting diodes for improved current efficiency (2006) Appl. Phys. Lett, 89, p. 211108; Abell, J., Kim, C.S., Bewley, W.W., Merritt, C.D., Canedy, C.L., Vurgaftman, I., Meyer, J.R., Kim, M., Mid-infrared interband cascade light emitting devices with milliwatt output powers at room temperature (2014) Appl. Phys. Lett, 104 (26), p. 211108; Wang, F., Chen, J., Zhicheng, X., Zhou, Y., He, L., Performance comparison between the InAs-based and GaSb-based type-II superlattice photodiodes for long wavelength infrared detection (2017) Opt. Express, 25 (3), pp. 1629-1635; Wang, F., Chen, J., Xu, Z., Zhou, Y., He, L., InAs-based InAs/GaAsSb type-II superlattices: Growth and characterization (2015) J. Cryst. Growth, 416, pp. 130-133; Cheetham, K.J., Krier, A., Marko, I.P., Aldukhayel, A., Sweeney, S.J., Direct evidence for suppression of Auger recombination in GaInAsSbP/InAs mid-infrared light-emitting diodes (2011) Appl. Phys. Lett, 99, p. 141110; Keen, J.A., Repiso, E., Lu, Q., Kesaria, M., Marshall, A.R.J., Krier, A., Electroluminescence and photoluminescence of type-II InAs/InAsSb strained-layer superlattices in the mid-infrared (2018) Infrared Phys. Technol, 93, pp. 375-380; Smart Photonic and Optoelectronic Integrated Circuits XXII, SPIE OPTO 2020 ; Conference date: 01-02-2020 Through 06-02-2020",
year = "2020",
month = feb,
day = "1",
doi = "10.1117/12.2544811",
language = "English",
url = "https://www.spiedigitallibrary.org/conference-proceedings-of-spie/11284.toc",

}

RIS

TY - CONF

T1 - Mid-infrared interband cascade light-emitting diodes with InAs/GaAßb superlattices on InAs substrates

T2 - Smart Photonic and Optoelectronic Integrated Circuits XXII

AU - Lu, Q.

AU - Zhou, Y.

AU - Chen, J.

AU - He, L.

AU - Krier, A.

AU - (SPIE), The Society of Photo-Optical Instrumentation Engineers

A2 - S., He

A2 - L., Vivien

N1 - Conference code: 158515 Export Date: 16 April 2020 CODEN: PSISD Correspondence Address: Lu, Q.; Physics Department, Lancaster UniversityUnited Kingdom; email: q.lu3@lancaster.ac.uk Funding details: Engineering and Physical Sciences Research Council, EPSRC, EP/P012035/1 Funding text 1: This work was supported by the EPSRC Grant of UK (No. EP/P012035/1). References: Krier, A., Yin, M., Smirnov, V., Batty, P., Carrington, P.J., Solovev, V., Sherstnev, V., The development of room temperature LEDs and lasers for the mid-infrared spectral range (2008) Phys. Status Solidi, 205 (1), pp. 129-143; Yang, R.Q., Infrared laser based on intersubband transitions in quantum wells (1995) Superlattices Microstruct, 17 (1), pp. 77-80; Lotfi, H., Li, L., Lei, L., Jiang, Y., Yang, R.Q., Klem, J.F., Johnson, M.B., Short-wavelength interband cascade infrared photodetectors operating above room temperature (2016) J. Appl. Phys, 119, p. 023105; Lei, L., Li, L., Huang, W., Massengale, J.A., Ye, H., Lotfi, H., Yang, R.Q., Johnson, M.B., Resonant tunneling and multiple negative differential conductance features in long wavelength interband cascade infrared photodetectors (2017) Appl. Phys. Lett, 111, p. 113504; Lotfi, H., Li, L., Ye, H., Hinkey, R.T., Lei, L., Yang, R.Q., Keay, J.C., Johnson, M.B., Interband cascade infrared photodetectors with long and very-long cutoff wavelengths (2015) Infrared Phys. Technol, 70, pp. 162-167; Lotfi, H., Li, L., Lei, L., Yang, R.Q., Klem, J.F., Johnson, M.B., Narrow-bandgap interband cascade thermophotovoltaic cells (2017) IEEE J. Photovoltaics, 7 (5), pp. 1462-1468; Ermolaev, M., Lin, Y., Shterengas, L., Hosoda, T., Kipshidze, G., Suchalkin, S., Belenky, G., GaSb-based type-i quantum well 3-3. 5 um cascade light emitting diodes (2018) IEEE Photonics Technol. Lett, 30 (9), pp. 869-872; Kim, C.S., Kim, M., Bewley, W.W., Merritt, C.D., Canedy, C.L., Warren, M.V., Vurgaftman, I., Meyer, J.R., Mid-infrared interband cascade light-emitting devices with improved radiance (2018) Proc. SPIE, p. 10540; Ricker, R.J., Provence, S.R., Norton, D.T., Boggess, T.F., Prineas, J.P., Broadband mid-infrared superlattice light-emitting diodes (2017) J. Appl. Phys, 121, p. 185701; Muhowski, A.J., Ricker, R.J., Boggess, T.F., Prineas, J.P., N-type anode layer, high-power MWIR superlattice LED (2017) Appl. Phys. Lett, 111, p. 243509; Prineas, J.P., Ricker, R.J., Muhowski, A., Bogh, C., Provence, S., Boggess, T.F., Cascading, efficiency, and broadband emission in mid-infrared superlattice light emitting diodes (SLEDs) (2017) Proc. SPIE, p. 10124; Murray, L.M., Norton, D.T., Olesberg, J.T., Boggess, T.F., Prineas, J.P., Comparison of tunnel junctions for cascaded InAs/GaSb superlattice light emitting diodes (2012) J. Vac. Sci. Technol. B, 30 (2), p. 021203; Prineas, J.P., Olesberg, J.T., Yager, J.R., Cao, C., Coretsopoulos, C., Reddy, M.H.M., Cascaded active regions in 2. 4m GaInAsSb light-emitting diodes for improved current efficiency (2006) Appl. Phys. Lett, 89, p. 211108; Abell, J., Kim, C.S., Bewley, W.W., Merritt, C.D., Canedy, C.L., Vurgaftman, I., Meyer, J.R., Kim, M., Mid-infrared interband cascade light emitting devices with milliwatt output powers at room temperature (2014) Appl. Phys. Lett, 104 (26), p. 211108; Wang, F., Chen, J., Zhicheng, X., Zhou, Y., He, L., Performance comparison between the InAs-based and GaSb-based type-II superlattice photodiodes for long wavelength infrared detection (2017) Opt. Express, 25 (3), pp. 1629-1635; Wang, F., Chen, J., Xu, Z., Zhou, Y., He, L., InAs-based InAs/GaAsSb type-II superlattices: Growth and characterization (2015) J. Cryst. Growth, 416, pp. 130-133; Cheetham, K.J., Krier, A., Marko, I.P., Aldukhayel, A., Sweeney, S.J., Direct evidence for suppression of Auger recombination in GaInAsSbP/InAs mid-infrared light-emitting diodes (2011) Appl. Phys. Lett, 99, p. 141110; Keen, J.A., Repiso, E., Lu, Q., Kesaria, M., Marshall, A.R.J., Krier, A., Electroluminescence and photoluminescence of type-II InAs/InAsSb strained-layer superlattices in the mid-infrared (2018) Infrared Phys. Technol, 93, pp. 375-380

PY - 2020/2/1

Y1 - 2020/2/1

N2 - In this work, we report interband cascade light emitting diodes (ICLEDs) based on InAs/GaAßb superlattices emitting around 4.5 μm The ICLED structures were grown on InAs substrates by molecular beam epitaxy, which were composed of InAs/GaAßb superlattice emitters, InAs/AlAßb multi-quantum well (MQW) injection regions, and the GaAßb/AlAßb MQW tunneling regions. Both 5-stage and 2-stage ICLEDs were fabricated. The devices exhibited high output power, low series resistance and high wall-plug efficiency (WPE). At room temperature, radiances of 0.36 W/cm 2 sr and 0.19 W/cm 2 sr were achieved from the 5-stage and 2-stage ICLEDs respectively. At 80 K, the output power from the 5-stage ICLED reached 3.56 mW with 350 mA injection current, resulting in a WPE of around 0.5%. The efficiency was largely maintained with increasing injection. The thermal quenching of these ICLEDs from 20 K to 300 K was also significantly leß than other types of devices emitting at similar wavelengths. These results demonstrate that ICLEDs have great potential for mid-infrared light emitting diode applications requiring large output power and high wall-plug efficiency.

AB - In this work, we report interband cascade light emitting diodes (ICLEDs) based on InAs/GaAßb superlattices emitting around 4.5 μm The ICLED structures were grown on InAs substrates by molecular beam epitaxy, which were composed of InAs/GaAßb superlattice emitters, InAs/AlAßb multi-quantum well (MQW) injection regions, and the GaAßb/AlAßb MQW tunneling regions. Both 5-stage and 2-stage ICLEDs were fabricated. The devices exhibited high output power, low series resistance and high wall-plug efficiency (WPE). At room temperature, radiances of 0.36 W/cm 2 sr and 0.19 W/cm 2 sr were achieved from the 5-stage and 2-stage ICLEDs respectively. At 80 K, the output power from the 5-stage ICLED reached 3.56 mW with 350 mA injection current, resulting in a WPE of around 0.5%. The efficiency was largely maintained with increasing injection. The thermal quenching of these ICLEDs from 20 K to 300 K was also significantly leß than other types of devices emitting at similar wavelengths. These results demonstrate that ICLEDs have great potential for mid-infrared light emitting diode applications requiring large output power and high wall-plug efficiency.

KW - Interband cascade structures

KW - Mid-infrared LEDs

KW - Diodes

KW - Efficiency

KW - Electric resistance

KW - Gallium compounds

KW - Infrared devices

KW - Light emitting diodes

KW - Molecular beam epitaxy

KW - Photonic integration technology

KW - Semiconductor quantum wells

KW - Substrates

KW - Injection currents

KW - Interband cascade structure

KW - Interband cascades

KW - Midinfrared

KW - Multiquantum wells

KW - Series resistances

KW - Thermal quenching

KW - Wallplug efficiency

KW - III-V semiconductors

U2 - 10.1117/12.2544811

DO - 10.1117/12.2544811

M3 - Conference paper

Y2 - 1 February 2020 through 6 February 2020

ER -