Home > Research > Publications & Outputs > MiniBooNE and MicroBooNE Joint Fit to a 3+1 Ste...

Electronic data

  • 2201.01724

    Accepted author manuscript, 724 KB, PDF document

    Available under license: CC BY: Creative Commons Attribution 4.0 International License

Links

Text available via DOI:

View graph of relations

MiniBooNE and MicroBooNE Joint Fit to a 3+1 Sterile Neutrino Scenario

Research output: Contribution to Journal/MagazineJournal articlepeer-review

Published

Standard

MiniBooNE and MicroBooNE Joint Fit to a 3+1 Sterile Neutrino Scenario. / MiniBooNE Collaboration ; Nowak, J.
In: Physical review letters, Vol. 129, No. 20, 201801, 08.11.2022.

Research output: Contribution to Journal/MagazineJournal articlepeer-review

Harvard

MiniBooNE Collaboration & Nowak, J 2022, 'MiniBooNE and MicroBooNE Joint Fit to a 3+1 Sterile Neutrino Scenario', Physical review letters, vol. 129, no. 20, 201801. https://doi.org/10.1103/PhysRevLett.129.201801

APA

Vancouver

MiniBooNE Collaboration, Nowak J. MiniBooNE and MicroBooNE Joint Fit to a 3+1 Sterile Neutrino Scenario. Physical review letters. 2022 Nov 8;129(20):201801. doi: 10.1103/PhysRevLett.129.201801

Author

MiniBooNE Collaboration ; Nowak, J. / MiniBooNE and MicroBooNE Joint Fit to a 3+1 Sterile Neutrino Scenario. In: Physical review letters. 2022 ; Vol. 129, No. 20.

Bibtex

@article{df0237bf5cf64be99785dd54fd631929,
title = "MiniBooNE and MicroBooNE Joint Fit to a 3+1 Sterile Neutrino Scenario",
abstract = " This letter presents the results from the MiniBooNE experiment within a full {"}3+1{"} scenario where one sterile neutrino is introduced to the three-active-neutrino picture. In addition to electron-neutrino appearance at short-baselines, this scenario also allows for disappearance of the muon-neutrino and electron-neutrino fluxes in the Booster Neutrino Beam, which is shared by the MicroBooNE experiment. We present the 3+1 fit to the MiniBooNE electron-(anti)neutrino and muon-(anti)neutrino data alone, and in combination with the MicroBooNE electron-neutrino CCQE data. The best-fit parameters of this joint fit are $\Delta m^2 = 0.209$ eV, $|U_{e4}|^2 = 0.502$, $|U_{\mu 4}|^2 = 0.0158$, and $\sin^2(2\theta_{\mu e})=0.0316$. Comparing the no-oscillation scenario to the 3+1 model, the data prefer the 3+1 model with a $\Delta \chi^2/\text{dof} = 24.7 / 3$. ",
keywords = "hep-ex, hep-ph, nucl-ex",
author = "{MiniBooNE Collaboration} and Aguilar-Arevalo, {A. A.} and Brown, {B. C.} and Conrad, {J. M.} and R. Dharmapalan and A. Diaz and Z. Djurcic and Finley, {D. A.} and R. Ford and Garvey, {G. T.} and S. Gollapinni and A. Hourlier and Huang, {E. -C.} and Kamp, {N. W.} and G. Karagiorgi and T. Katori and T. Kobilarcik and Louis, {W. C.} and C. Mariani and W. Marsh and Mills, {G. B.} and J. Mirabal-Martinez and J. Nowak and Z. Pavlovic and H. Ray and Roe, {B. P.} and A. Schneider and Shaevitz, {M. H.} and J. Spitz and I. Stancu and R. Tayloe and Thornton, {R. T.} and M. Tzanov and Water, {R. G. Van de} and Zimmerman, {E. D.}",
year = "2022",
month = nov,
day = "8",
doi = "10.1103/PhysRevLett.129.201801",
language = "English",
volume = "129",
journal = "Physical review letters",
issn = "1079-7114",
publisher = "American Physical Society",
number = "20",

}

RIS

TY - JOUR

T1 - MiniBooNE and MicroBooNE Joint Fit to a 3+1 Sterile Neutrino Scenario

AU - MiniBooNE Collaboration

AU - Aguilar-Arevalo, A. A.

AU - Brown, B. C.

AU - Conrad, J. M.

AU - Dharmapalan, R.

AU - Diaz, A.

AU - Djurcic, Z.

AU - Finley, D. A.

AU - Ford, R.

AU - Garvey, G. T.

AU - Gollapinni, S.

AU - Hourlier, A.

AU - Huang, E. -C.

AU - Kamp, N. W.

AU - Karagiorgi, G.

AU - Katori, T.

AU - Kobilarcik, T.

AU - Louis, W. C.

AU - Mariani, C.

AU - Marsh, W.

AU - Mills, G. B.

AU - Mirabal-Martinez, J.

AU - Nowak, J.

AU - Pavlovic, Z.

AU - Ray, H.

AU - Roe, B. P.

AU - Schneider, A.

AU - Shaevitz, M. H.

AU - Spitz, J.

AU - Stancu, I.

AU - Tayloe, R.

AU - Thornton, R. T.

AU - Tzanov, M.

AU - Water, R. G. Van de

AU - Zimmerman, E. D.

PY - 2022/11/8

Y1 - 2022/11/8

N2 - This letter presents the results from the MiniBooNE experiment within a full "3+1" scenario where one sterile neutrino is introduced to the three-active-neutrino picture. In addition to electron-neutrino appearance at short-baselines, this scenario also allows for disappearance of the muon-neutrino and electron-neutrino fluxes in the Booster Neutrino Beam, which is shared by the MicroBooNE experiment. We present the 3+1 fit to the MiniBooNE electron-(anti)neutrino and muon-(anti)neutrino data alone, and in combination with the MicroBooNE electron-neutrino CCQE data. The best-fit parameters of this joint fit are $\Delta m^2 = 0.209$ eV, $|U_{e4}|^2 = 0.502$, $|U_{\mu 4}|^2 = 0.0158$, and $\sin^2(2\theta_{\mu e})=0.0316$. Comparing the no-oscillation scenario to the 3+1 model, the data prefer the 3+1 model with a $\Delta \chi^2/\text{dof} = 24.7 / 3$.

AB - This letter presents the results from the MiniBooNE experiment within a full "3+1" scenario where one sterile neutrino is introduced to the three-active-neutrino picture. In addition to electron-neutrino appearance at short-baselines, this scenario also allows for disappearance of the muon-neutrino and electron-neutrino fluxes in the Booster Neutrino Beam, which is shared by the MicroBooNE experiment. We present the 3+1 fit to the MiniBooNE electron-(anti)neutrino and muon-(anti)neutrino data alone, and in combination with the MicroBooNE electron-neutrino CCQE data. The best-fit parameters of this joint fit are $\Delta m^2 = 0.209$ eV, $|U_{e4}|^2 = 0.502$, $|U_{\mu 4}|^2 = 0.0158$, and $\sin^2(2\theta_{\mu e})=0.0316$. Comparing the no-oscillation scenario to the 3+1 model, the data prefer the 3+1 model with a $\Delta \chi^2/\text{dof} = 24.7 / 3$.

KW - hep-ex

KW - hep-ph

KW - nucl-ex

U2 - 10.1103/PhysRevLett.129.201801

DO - 10.1103/PhysRevLett.129.201801

M3 - Journal article

VL - 129

JO - Physical review letters

JF - Physical review letters

SN - 1079-7114

IS - 20

M1 - 201801

ER -