Final published version
Research output: Contribution to Journal/Magazine › Journal article › peer-review
Research output: Contribution to Journal/Magazine › Journal article › peer-review
}
TY - JOUR
T1 - Modal Purcell factor in PT -symmetric waveguides
AU - Morozko, Fyodor
AU - Novitsky, Andrey
AU - Karabchevsky, Alina
PY - 2020/10/15
Y1 - 2020/10/15
N2 - We study the spontaneous emission rate of a dipole emitter in PT-symmetric environment of two coupled waveguides using the reciprocity approach generalized to nonorthogonal eigenmodes of non-Hermitian systems. Considering emission to the guided modes, we define and calculate the modal Purcell factor composed of contributions of independent and interfering nonorthogonal modes leading to the emergence of cross-mode terms in the Purcell factor. We reveal that the closed-form expression for the modal Purcell factor within the coupled mode theory slightly alters for the non-Hermitian coupled waveguide compared to the Hermitian case. It is true even near the exceptional point, where the eigenmodes coalesce and the Petermann factor goes to infinity. This result is fully confirmed by the numerical simulations of active and passive PT-symmetric systems being the consequence of the mode nonorthogonality.
AB - We study the spontaneous emission rate of a dipole emitter in PT-symmetric environment of two coupled waveguides using the reciprocity approach generalized to nonorthogonal eigenmodes of non-Hermitian systems. Considering emission to the guided modes, we define and calculate the modal Purcell factor composed of contributions of independent and interfering nonorthogonal modes leading to the emergence of cross-mode terms in the Purcell factor. We reveal that the closed-form expression for the modal Purcell factor within the coupled mode theory slightly alters for the non-Hermitian coupled waveguide compared to the Hermitian case. It is true even near the exceptional point, where the eigenmodes coalesce and the Petermann factor goes to infinity. This result is fully confirmed by the numerical simulations of active and passive PT-symmetric systems being the consequence of the mode nonorthogonality.
U2 - 10.1103/PhysRevB.102.155303
DO - 10.1103/PhysRevB.102.155303
M3 - Journal article
VL - 102
JO - Physical Review B
JF - Physical Review B
SN - 2469-9950
IS - 15
M1 - 155303
ER -