Rights statement: ©2016 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.
Accepted author manuscript, 677 KB, PDF document
Available under license: CC BY-NC: Creative Commons Attribution-NonCommercial 4.0 International License
Final published version
Research output: Contribution in Book/Report/Proceedings - With ISBN/ISSN › Conference contribution/Paper › peer-review
Research output: Contribution in Book/Report/Proceedings - With ISBN/ISSN › Conference contribution/Paper › peer-review
}
TY - GEN
T1 - Model development and energy management control for hybrid electric race vehicles
AU - Reeves, Kieran
AU - Montazeri, Allahyar
AU - Taylor, Charles James
PY - 2016/8/31
Y1 - 2016/8/31
N2 - A Hybrid Electric Vehicle longitudinal dynamics model for the control of energy management is developed. The model is implemented using Simulink and consists of a transitional vehicle speed input parameterized by, for example, the New European Driving Cycle. It is a backward looking model in that engine and motor on/off states are determined by the controller, dependent on wheel torque requirements and output targets. The objective of the simulation is to calculate tractive effort and resistance forces to determine longitudinal net vehicle force at the road. This article addresses model development and initial investigations of its dynamic behaviour in order to establish appropriate energy management strategies for the Hybrid Electric system. In particular, All Wheel Drive, Front Wheel Drive and Rear Wheel Drive drivetrain architectures are evaluated to determine minimum fuel usage and battery state of charge. The use of a logic controller allows a reduction of simulation time and ensures accurate results for charge depletion and harvesting. Simulated fuel consumption is within 1% of actual usage.
AB - A Hybrid Electric Vehicle longitudinal dynamics model for the control of energy management is developed. The model is implemented using Simulink and consists of a transitional vehicle speed input parameterized by, for example, the New European Driving Cycle. It is a backward looking model in that engine and motor on/off states are determined by the controller, dependent on wheel torque requirements and output targets. The objective of the simulation is to calculate tractive effort and resistance forces to determine longitudinal net vehicle force at the road. This article addresses model development and initial investigations of its dynamic behaviour in order to establish appropriate energy management strategies for the Hybrid Electric system. In particular, All Wheel Drive, Front Wheel Drive and Rear Wheel Drive drivetrain architectures are evaluated to determine minimum fuel usage and battery state of charge. The use of a logic controller allows a reduction of simulation time and ensures accurate results for charge depletion and harvesting. Simulated fuel consumption is within 1% of actual usage.
KW - Hybrid Electric Vehicles
KW - Longitudinal Dynamics
KW - Simscape
KW - Vehicle Dynamics
KW - Energy Management
KW - Control
KW - Race Vehicle
U2 - 10.1109/CONTROL.2016.7737651
DO - 10.1109/CONTROL.2016.7737651
M3 - Conference contribution/Paper
SN - 9781467398923
BT - 2016 UKACC 11th International Conference on Control (CONTROL)
PB - IEEE
T2 - 11th UKACC International Control Conference
Y2 - 31 August 2016 through 2 September 2016
ER -