Accepted author manuscript, 2.11 MB, PDF document
Available under license: CC BY: Creative Commons Attribution 4.0 International License
Final published version
Licence: CC BY: Creative Commons Attribution 4.0 International License
Research output: Contribution to Journal/Magazine › Journal article › peer-review
Research output: Contribution to Journal/Magazine › Journal article › peer-review
}
TY - JOUR
T1 - More than five-twelfths of the zeros of ζ are on the critical line
AU - Zeindler, Dirk
AU - Robles, Nicolas
AU - Zaharescu, Alexandru
AU - Pratt, Kyle
PY - 2019/12/6
Y1 - 2019/12/6
N2 - The second moment of the Riemann zeta-function twisted by a normalized Dirichlet polynomial with coefficients of the form (μ⋆Λ1⋆k1⋆Λ2⋆k2⋆⋯⋆Λd⋆kd) is computed unconditionally by means of the autocorrelation of ratios of ζ techniques from Conrey et al. (Proc Lond Math Soc (3) 91:33–104, 2005), Conrey et al. (Commun Number Theory Phys 2:593–636, 2008) as well as Conrey and Snaith (Proc Lond Math Soc 3(94):594–646, 2007). This in turn allows us to describe the combinatorial process behind the mollification of ζ(s)+λ1ζ′(s)logT+λ2ζ′′(s)log2T+⋯+λdζ(d)(s)logdT,where ζ ( k ) stands for the kth derivative of the Riemann zeta-function and {λk}k=1d are real numbers. Improving on recent results on long mollifiers and sums of Kloosterman sums due to Pratt and Robles (Res Number Theory 4:9, 2018), as an application, we increase the current lower bound of critical zeros of the Riemann zeta-function to slightly over five-twelfths.
AB - The second moment of the Riemann zeta-function twisted by a normalized Dirichlet polynomial with coefficients of the form (μ⋆Λ1⋆k1⋆Λ2⋆k2⋆⋯⋆Λd⋆kd) is computed unconditionally by means of the autocorrelation of ratios of ζ techniques from Conrey et al. (Proc Lond Math Soc (3) 91:33–104, 2005), Conrey et al. (Commun Number Theory Phys 2:593–636, 2008) as well as Conrey and Snaith (Proc Lond Math Soc 3(94):594–646, 2007). This in turn allows us to describe the combinatorial process behind the mollification of ζ(s)+λ1ζ′(s)logT+λ2ζ′′(s)log2T+⋯+λdζ(d)(s)logdT,where ζ ( k ) stands for the kth derivative of the Riemann zeta-function and {λk}k=1d are real numbers. Improving on recent results on long mollifiers and sums of Kloosterman sums due to Pratt and Robles (Res Number Theory 4:9, 2018), as an application, we increase the current lower bound of critical zeros of the Riemann zeta-function to slightly over five-twelfths.
KW - Riemann zeta-function
KW - Kloosterman sum
KW - Zeors on the critical line
U2 - 10.1007/s40687-019-0199-8
DO - 10.1007/s40687-019-0199-8
M3 - Journal article
VL - 7
JO - Research in the Mathematical Sciences.
JF - Research in the Mathematical Sciences.
SN - 2522-0144
IS - 1
M1 - 2
ER -