Home > Research > Publications & Outputs > Multilayer Evolving Fuzzy Neural Networks

Electronic data

  • MEFNN_final

    Accepted author manuscript, 550 KB, PDF document

    Available under license: CC BY: Creative Commons Attribution 4.0 International License

Links

Text available via DOI:

View graph of relations

Multilayer Evolving Fuzzy Neural Networks

Research output: Contribution to Journal/MagazineJournal articlepeer-review

E-pub ahead of print

Standard

Multilayer Evolving Fuzzy Neural Networks. / Gu, Xiaowei; Angelov, Plamen; Han, Jungong et al.
In: IEEE Transactions on Fuzzy Systems, 16.05.2023, p. 1-12.

Research output: Contribution to Journal/MagazineJournal articlepeer-review

Harvard

APA

Gu, X., Angelov, P., Han, J., & Shen, Q. (2023). Multilayer Evolving Fuzzy Neural Networks. IEEE Transactions on Fuzzy Systems, 1-12. Advance online publication. https://doi.org/10.1109/tfuzz.2023.3276263

Vancouver

Gu X, Angelov P, Han J, Shen Q. Multilayer Evolving Fuzzy Neural Networks. IEEE Transactions on Fuzzy Systems. 2023 May 16;1-12. Epub 2023 May 16. doi: 10.1109/tfuzz.2023.3276263

Author

Gu, Xiaowei ; Angelov, Plamen ; Han, Jungong et al. / Multilayer Evolving Fuzzy Neural Networks. In: IEEE Transactions on Fuzzy Systems. 2023 ; pp. 1-12.

Bibtex

@article{d3df1447462747f9884e17d9b9bb04d8,
title = "Multilayer Evolving Fuzzy Neural Networks",
abstract = "It is widely recognised that learning systems have to go deeper to exchange for more powerful representation learning capabilities in order to precisely approximate nonlinear complex problems. However, the best known computational intelligence approaches with such characteristics, namely, deep neural networks, are often criticised for lacking transparency. In this paper, a novel multilayer evolving fuzzy neural network (MEFNN) with a transparent system structure is proposed. The proposed MEFNN is a meta-level stacking ensemble learning system composed of multiple cascading evolving neuro-fuzzy inference systems (ENFISs), processing input data layer-by-layer to automatically learn multi-level nonlinear distributed repre- sentations from data. Each ENFIS is an evolving fuzzy system capable of learning from new data sample by sample to self- organise a set of human-interpretable IF-THEN fuzzy rules that facilitate approximate reasoning. Adopting ENFIS as its ensemble component, the multilayer system structure of MEFNN is flexible and transparent, and its internal reasoning and decision-making mechanism can be explained and interpreted to/by humans. To facilitate information exchange between different layers and at- tain stronger representation learning capability, MEFNN utilises error backpropagation to self-update the consequent parameters of the IF-THEN rules of each ensemble component based on the approximation error propagated backward. To enhance the capability of MEFNN to handle complex problems, a nonlinear activation function is introduced to modelling the consequent parts of the IF-THEN rules of ENFISs, thereby empowering both the representation and the reflection of nonlinearity in the resulting fuzzy outputs. Numerical examples on a wide variety of challenging (benchmark and real-world) classification and regression problems demonstrate the superior practical performance of MEFNN, revealing the effectiveness and validity of the proposed approach.",
keywords = "Applied Mathematics, Artificial Intelligence, Computational Theory and Mathematics, Control and Systems Engineering",
author = "Xiaowei Gu and Plamen Angelov and Jungong Han and Qiang Shen",
year = "2023",
month = may,
day = "16",
doi = "10.1109/tfuzz.2023.3276263",
language = "English",
pages = "1--12",
journal = "IEEE Transactions on Fuzzy Systems",
issn = "1063-6706",
publisher = "IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC",

}

RIS

TY - JOUR

T1 - Multilayer Evolving Fuzzy Neural Networks

AU - Gu, Xiaowei

AU - Angelov, Plamen

AU - Han, Jungong

AU - Shen, Qiang

PY - 2023/5/16

Y1 - 2023/5/16

N2 - It is widely recognised that learning systems have to go deeper to exchange for more powerful representation learning capabilities in order to precisely approximate nonlinear complex problems. However, the best known computational intelligence approaches with such characteristics, namely, deep neural networks, are often criticised for lacking transparency. In this paper, a novel multilayer evolving fuzzy neural network (MEFNN) with a transparent system structure is proposed. The proposed MEFNN is a meta-level stacking ensemble learning system composed of multiple cascading evolving neuro-fuzzy inference systems (ENFISs), processing input data layer-by-layer to automatically learn multi-level nonlinear distributed repre- sentations from data. Each ENFIS is an evolving fuzzy system capable of learning from new data sample by sample to self- organise a set of human-interpretable IF-THEN fuzzy rules that facilitate approximate reasoning. Adopting ENFIS as its ensemble component, the multilayer system structure of MEFNN is flexible and transparent, and its internal reasoning and decision-making mechanism can be explained and interpreted to/by humans. To facilitate information exchange between different layers and at- tain stronger representation learning capability, MEFNN utilises error backpropagation to self-update the consequent parameters of the IF-THEN rules of each ensemble component based on the approximation error propagated backward. To enhance the capability of MEFNN to handle complex problems, a nonlinear activation function is introduced to modelling the consequent parts of the IF-THEN rules of ENFISs, thereby empowering both the representation and the reflection of nonlinearity in the resulting fuzzy outputs. Numerical examples on a wide variety of challenging (benchmark and real-world) classification and regression problems demonstrate the superior practical performance of MEFNN, revealing the effectiveness and validity of the proposed approach.

AB - It is widely recognised that learning systems have to go deeper to exchange for more powerful representation learning capabilities in order to precisely approximate nonlinear complex problems. However, the best known computational intelligence approaches with such characteristics, namely, deep neural networks, are often criticised for lacking transparency. In this paper, a novel multilayer evolving fuzzy neural network (MEFNN) with a transparent system structure is proposed. The proposed MEFNN is a meta-level stacking ensemble learning system composed of multiple cascading evolving neuro-fuzzy inference systems (ENFISs), processing input data layer-by-layer to automatically learn multi-level nonlinear distributed repre- sentations from data. Each ENFIS is an evolving fuzzy system capable of learning from new data sample by sample to self- organise a set of human-interpretable IF-THEN fuzzy rules that facilitate approximate reasoning. Adopting ENFIS as its ensemble component, the multilayer system structure of MEFNN is flexible and transparent, and its internal reasoning and decision-making mechanism can be explained and interpreted to/by humans. To facilitate information exchange between different layers and at- tain stronger representation learning capability, MEFNN utilises error backpropagation to self-update the consequent parameters of the IF-THEN rules of each ensemble component based on the approximation error propagated backward. To enhance the capability of MEFNN to handle complex problems, a nonlinear activation function is introduced to modelling the consequent parts of the IF-THEN rules of ENFISs, thereby empowering both the representation and the reflection of nonlinearity in the resulting fuzzy outputs. Numerical examples on a wide variety of challenging (benchmark and real-world) classification and regression problems demonstrate the superior practical performance of MEFNN, revealing the effectiveness and validity of the proposed approach.

KW - Applied Mathematics

KW - Artificial Intelligence

KW - Computational Theory and Mathematics

KW - Control and Systems Engineering

U2 - 10.1109/tfuzz.2023.3276263

DO - 10.1109/tfuzz.2023.3276263

M3 - Journal article

SP - 1

EP - 12

JO - IEEE Transactions on Fuzzy Systems

JF - IEEE Transactions on Fuzzy Systems

SN - 1063-6706

ER -