Research output: Contribution to Journal/Magazine › Journal article › peer-review
Research output: Contribution to Journal/Magazine › Journal article › peer-review
}
TY - JOUR
T1 - Multivariate Poisson regression with covariance structure.
AU - Kalis, D.
AU - Meligkotsidou, L.
PY - 2005
Y1 - 2005
N2 - In recent years the applications of multivariate Poisson models have increased, mainly because of the gradual increase in computer performance. The multivariate Poisson model used in practice is based on a common covariance term for all the pairs of variables. This is rather restrictive and does not allow for modelling the covariance structure of the data in a flexible way. In this paper we propose inference for a multivariate Poisson model with larger structure, i.e. different covariance for each pair of variables. Maximum likelihood estimation, as well as Bayesian estimation methods are proposed. Both are based on a data augmentation scheme that reflects the multivariate reduction derivation of the joint probability function. In order to enlarge the applicability of the model we allow for covariates in the specification of both the mean and the covariance parameters. Extension to models with complete structure with many multi-way covariance terms is discussed. The method is demonstrated by analyzing a real life data set.
AB - In recent years the applications of multivariate Poisson models have increased, mainly because of the gradual increase in computer performance. The multivariate Poisson model used in practice is based on a common covariance term for all the pairs of variables. This is rather restrictive and does not allow for modelling the covariance structure of the data in a flexible way. In this paper we propose inference for a multivariate Poisson model with larger structure, i.e. different covariance for each pair of variables. Maximum likelihood estimation, as well as Bayesian estimation methods are proposed. Both are based on a data augmentation scheme that reflects the multivariate reduction derivation of the joint probability function. In order to enlarge the applicability of the model we allow for covariates in the specification of both the mean and the covariance parameters. Extension to models with complete structure with many multi-way covariance terms is discussed. The method is demonstrated by analyzing a real life data set.
KW - data augmentation - EM algorithm - Markov chain Monte Carlo - multivariate reduction - crime data
U2 - 10.1007/s11222-005-4069-4
DO - 10.1007/s11222-005-4069-4
M3 - Journal article
VL - 15
SP - 255
EP - 265
JO - Statistics and Computing
JF - Statistics and Computing
SN - 0960-3174
IS - 4
ER -