Home > Research > Publications & Outputs > Multi-view Bayesian spatio-temporal graph neura...

Electronic data

  • accepted version

    Accepted author manuscript, 1.8 MB, PDF document

    Available under license: Other

Links

Text available via DOI:

View graph of relations

Multi-view Bayesian spatio-temporal graph neural networks for reliable traffic flow prediction

Research output: Contribution to Journal/MagazineJournal articlepeer-review

Published

Standard

Multi-view Bayesian spatio-temporal graph neural networks for reliable traffic flow prediction. / Xia, J.; Wang, S.; Wang, X. et al.
In: International Journal of Machine Learning and Cybernetics, Vol. 15, No. 1, 01.01.2024, p. 65-78.

Research output: Contribution to Journal/MagazineJournal articlepeer-review

Harvard

Xia, J, Wang, S, Wang, X, Xia, M, Xie, K & Cao, J 2024, 'Multi-view Bayesian spatio-temporal graph neural networks for reliable traffic flow prediction', International Journal of Machine Learning and Cybernetics, vol. 15, no. 1, pp. 65-78. https://doi.org/10.1007/s13042-022-01689-2

APA

Xia, J., Wang, S., Wang, X., Xia, M., Xie, K., & Cao, J. (2024). Multi-view Bayesian spatio-temporal graph neural networks for reliable traffic flow prediction. International Journal of Machine Learning and Cybernetics, 15(1), 65-78. https://doi.org/10.1007/s13042-022-01689-2

Vancouver

Xia J, Wang S, Wang X, Xia M, Xie K, Cao J. Multi-view Bayesian spatio-temporal graph neural networks for reliable traffic flow prediction. International Journal of Machine Learning and Cybernetics. 2024 Jan 1;15(1):65-78. Epub 2022 Oct 20. doi: 10.1007/s13042-022-01689-2

Author

Xia, J. ; Wang, S. ; Wang, X. et al. / Multi-view Bayesian spatio-temporal graph neural networks for reliable traffic flow prediction. In: International Journal of Machine Learning and Cybernetics. 2024 ; Vol. 15, No. 1. pp. 65-78.

Bibtex

@article{18d95080e3c64dc183fa22fe6a0c7c06,
title = "Multi-view Bayesian spatio-temporal graph neural networks for reliable traffic flow prediction",
abstract = "Accurate traffic flow prediction is critically essential to transportation safety and Intelligent Transportation Systems (ITS). Existing approaches generally assume the traffic data are complete and reliable. However, in real scenarios, the traffic data are usually sparse and noisy due to the unreliability of the road sensors. Meanwhile, the global semantic traffic correlations among the road links over the road network are largely ignored by existing works. To address these issues, in this paper we study the novel problem of reliable traffic prediction with noisy and sparse traffic data and propose a Multi-View Bayesian Spatio-Temporal Graph Neural Network (MVB-STNet for short) to effectively address it. Specifically, we first construct the traffic flow graphs from two views, the structural traffic graph based on the topological closeness of the road sensors, and the semantic traffic graph which is constructed based on the traffic flow correlations among all the road sensors. Then the features of the two views are learned simultaneously to more broadly capture the spatial correlations. Inspired by the effectiveness of Bayesian neural networks in handling data uncertainty, we design the Bayesian Spatio-Temporal Long Short-Term Memory Net layer to more effectively learn the spatio-temporal features from the sparse and noisy traffic data. Extensive evaluations are conducted over two real traffic datasets. The results show that our proposal significantly improves current state-of-the-arts in terms of traffic flow prediction with sparse and noisy data. ",
keywords = "Bayesian graph neural network, Data uncertainty, Traffic prediction",
author = "J. Xia and S. Wang and X. Wang and M. Xia and K. Xie and J. Cao",
year = "2024",
month = jan,
day = "1",
doi = "10.1007/s13042-022-01689-2",
language = "English",
volume = "15",
pages = "65--78",
journal = "International Journal of Machine Learning and Cybernetics",
number = "1",

}

RIS

TY - JOUR

T1 - Multi-view Bayesian spatio-temporal graph neural networks for reliable traffic flow prediction

AU - Xia, J.

AU - Wang, S.

AU - Wang, X.

AU - Xia, M.

AU - Xie, K.

AU - Cao, J.

PY - 2024/1/1

Y1 - 2024/1/1

N2 - Accurate traffic flow prediction is critically essential to transportation safety and Intelligent Transportation Systems (ITS). Existing approaches generally assume the traffic data are complete and reliable. However, in real scenarios, the traffic data are usually sparse and noisy due to the unreliability of the road sensors. Meanwhile, the global semantic traffic correlations among the road links over the road network are largely ignored by existing works. To address these issues, in this paper we study the novel problem of reliable traffic prediction with noisy and sparse traffic data and propose a Multi-View Bayesian Spatio-Temporal Graph Neural Network (MVB-STNet for short) to effectively address it. Specifically, we first construct the traffic flow graphs from two views, the structural traffic graph based on the topological closeness of the road sensors, and the semantic traffic graph which is constructed based on the traffic flow correlations among all the road sensors. Then the features of the two views are learned simultaneously to more broadly capture the spatial correlations. Inspired by the effectiveness of Bayesian neural networks in handling data uncertainty, we design the Bayesian Spatio-Temporal Long Short-Term Memory Net layer to more effectively learn the spatio-temporal features from the sparse and noisy traffic data. Extensive evaluations are conducted over two real traffic datasets. The results show that our proposal significantly improves current state-of-the-arts in terms of traffic flow prediction with sparse and noisy data.

AB - Accurate traffic flow prediction is critically essential to transportation safety and Intelligent Transportation Systems (ITS). Existing approaches generally assume the traffic data are complete and reliable. However, in real scenarios, the traffic data are usually sparse and noisy due to the unreliability of the road sensors. Meanwhile, the global semantic traffic correlations among the road links over the road network are largely ignored by existing works. To address these issues, in this paper we study the novel problem of reliable traffic prediction with noisy and sparse traffic data and propose a Multi-View Bayesian Spatio-Temporal Graph Neural Network (MVB-STNet for short) to effectively address it. Specifically, we first construct the traffic flow graphs from two views, the structural traffic graph based on the topological closeness of the road sensors, and the semantic traffic graph which is constructed based on the traffic flow correlations among all the road sensors. Then the features of the two views are learned simultaneously to more broadly capture the spatial correlations. Inspired by the effectiveness of Bayesian neural networks in handling data uncertainty, we design the Bayesian Spatio-Temporal Long Short-Term Memory Net layer to more effectively learn the spatio-temporal features from the sparse and noisy traffic data. Extensive evaluations are conducted over two real traffic datasets. The results show that our proposal significantly improves current state-of-the-arts in terms of traffic flow prediction with sparse and noisy data.

KW - Bayesian graph neural network

KW - Data uncertainty

KW - Traffic prediction

U2 - 10.1007/s13042-022-01689-2

DO - 10.1007/s13042-022-01689-2

M3 - Journal article

VL - 15

SP - 65

EP - 78

JO - International Journal of Machine Learning and Cybernetics

JF - International Journal of Machine Learning and Cybernetics

IS - 1

ER -