Home > Research > Publications & Outputs > Near-optimal mean value estimates for multidime...

Links

Text available via DOI:

View graph of relations

Near-optimal mean value estimates for multidimensional Weyl sums

Research output: Contribution to Journal/MagazineJournal articlepeer-review

Published

Standard

Near-optimal mean value estimates for multidimensional Weyl sums. / Parsell, Scott T. ; Prendiville, Sean; Wooley, Trevor D. .
In: Geom. Funct. Anal., Vol. 23, No. 6, 2013, p. 1962–2024.

Research output: Contribution to Journal/MagazineJournal articlepeer-review

Harvard

Parsell, ST, Prendiville, S & Wooley, TD 2013, 'Near-optimal mean value estimates for multidimensional Weyl sums', Geom. Funct. Anal., vol. 23, no. 6, pp. 1962–2024. https://doi.org/10.1007/s00039-013-0242-7

APA

Parsell, S. T., Prendiville, S., & Wooley, T. D. (2013). Near-optimal mean value estimates for multidimensional Weyl sums. Geom. Funct. Anal., 23(6), 1962–2024. https://doi.org/10.1007/s00039-013-0242-7

Vancouver

Parsell ST, Prendiville S, Wooley TD. Near-optimal mean value estimates for multidimensional Weyl sums. Geom. Funct. Anal. 2013;23(6):1962–2024. doi: 10.1007/s00039-013-0242-7

Author

Parsell, Scott T. ; Prendiville, Sean ; Wooley, Trevor D. . / Near-optimal mean value estimates for multidimensional Weyl sums. In: Geom. Funct. Anal. 2013 ; Vol. 23, No. 6. pp. 1962–2024.

Bibtex

@article{66dc3bd855784716918d287eb3c0d6a0,
title = "Near-optimal mean value estimates for multidimensional Weyl sums",
abstract = "We obtain sharp estimates for multidimensional generalisations of Vinogradov{\textquoteright}s mean value theorem for arbitrary translation-dilation invariant systems, achieving constraints on the number of variables approaching those conjectured to be the best possible. Several applications of our bounds are discussed.",
author = "Parsell, {Scott T.} and Sean Prendiville and Wooley, {Trevor D.}",
year = "2013",
doi = "10.1007/s00039-013-0242-7",
language = "English",
volume = "23",
pages = "1962–2024",
journal = "Geom. Funct. Anal.",
number = "6",

}

RIS

TY - JOUR

T1 - Near-optimal mean value estimates for multidimensional Weyl sums

AU - Parsell, Scott T.

AU - Prendiville, Sean

AU - Wooley, Trevor D.

PY - 2013

Y1 - 2013

N2 - We obtain sharp estimates for multidimensional generalisations of Vinogradov’s mean value theorem for arbitrary translation-dilation invariant systems, achieving constraints on the number of variables approaching those conjectured to be the best possible. Several applications of our bounds are discussed.

AB - We obtain sharp estimates for multidimensional generalisations of Vinogradov’s mean value theorem for arbitrary translation-dilation invariant systems, achieving constraints on the number of variables approaching those conjectured to be the best possible. Several applications of our bounds are discussed.

U2 - 10.1007/s00039-013-0242-7

DO - 10.1007/s00039-013-0242-7

M3 - Journal article

VL - 23

SP - 1962

EP - 2024

JO - Geom. Funct. Anal.

JF - Geom. Funct. Anal.

IS - 6

ER -