Final published version
Licence: CC BY: Creative Commons Attribution 4.0 International License
Research output: Contribution to Journal/Magazine › Journal article › peer-review
Research output: Contribution to Journal/Magazine › Journal article › peer-review
}
TY - JOUR
T1 - Negative refraction of light in an atomic medium
AU - Ruks, Lewis
AU - Ballantine, Kyle
AU - Ruostekoski, Janne
PY - 2025/2/12
Y1 - 2025/2/12
N2 - The quest to manipulate light propagation in ways not possible with natural media has driven the development of artificially structured metamaterials. One of the most striking effects is negative refraction, where the light beam deflects away from the boundary normal. However, due to material characteristics, the applications of this phenomenon, such as lensing that surpasses the diffraction limit, have been constrained. Here, we demonstrate negative refraction of light in an atomic medium without the use of artificial metama- terials, employing essentially exact simulations of light propagation. High transmission negative refraction is achieved in atomic arrays for different level structures and lattice constants, within the scope of currently realised experimental systems. We introduce an intuitive description of negative refraction based on col- lective excitation bands, whose transverse group velocities are antiparallel to the excitation quasi-momenta. We also illustrate how this phenomenon is robust to lattice imperfections and can be significantly enhanced through subradiance.
AB - The quest to manipulate light propagation in ways not possible with natural media has driven the development of artificially structured metamaterials. One of the most striking effects is negative refraction, where the light beam deflects away from the boundary normal. However, due to material characteristics, the applications of this phenomenon, such as lensing that surpasses the diffraction limit, have been constrained. Here, we demonstrate negative refraction of light in an atomic medium without the use of artificial metama- terials, employing essentially exact simulations of light propagation. High transmission negative refraction is achieved in atomic arrays for different level structures and lattice constants, within the scope of currently realised experimental systems. We introduce an intuitive description of negative refraction based on col- lective excitation bands, whose transverse group velocities are antiparallel to the excitation quasi-momenta. We also illustrate how this phenomenon is robust to lattice imperfections and can be significantly enhanced through subradiance.
U2 - 10.1038/s41467-025-56250-w
DO - 10.1038/s41467-025-56250-w
M3 - Journal article
VL - 16
JO - Nature Communications
JF - Nature Communications
SN - 2041-1723
IS - 1433
M1 - 1433
ER -