Home > Research > Publications & Outputs > No Need to Forget, Just Keep the Balance

Associated organisational unit

Electronic data

  • Tovar&Westermann-Cognition2022-preprint

    Rights statement: This is the author’s version of a work that was accepted for publication in Cognition. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Cognition, 230, 2023 DOI: 10.1016/j.cognition.2022.105176

    Accepted author manuscript, 715 KB, PDF document

    Available under license: CC BY-NC-ND: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License

Links

Text available via DOI:

View graph of relations

No Need to Forget, Just Keep the Balance: Hebbian Neural Networks for Statistical Learning

Research output: Contribution to Journal/MagazineJournal articlepeer-review

Published
Article number105176
<mark>Journal publication date</mark>31/01/2023
<mark>Journal</mark>Cognition
Volume230
Number of pages9
Publication StatusPublished
Early online date25/11/22
<mark>Original language</mark>English

Abstract

Language processing in humans has long been proposed to rely on sophisticated learning abilities including statistical learning. Endress and Johnson (E&J, 2021) recently presented a neural network model for statistical learning based on Hebbian learning principles. This model accounts for word segmentation tasks, one primary paradigm in statistical learning. In this discussion paper we review this model and compare it with the Hebbian model previously presented by Tovar and Westermann (T&W, 2017a; 2017b; 2018) that has accounted for serial reaction time tasks, cross-situational learning, and categorization paradigms, all relevant in the study of statistical learning. We discuss the similarities and differences between both models, and their key findings. From our analysis, we question the concept of “forgetting” in the model of E&J and their suggestion of considering forgetting as the critical ingredient for successful statistical learning. We instead suggest that a set of simple but well-balanced mechanisms including spreading activation, activation persistence, and synaptic weight decay, all based on biologically grounded principles, allow modeling statistical learning in Hebbian neural networks, as demonstrated in the T&W model which successfully covers learning of nonadjacent dependencies and accounts for differences between typical and atypical populations, both aspects that have not been fully demonstrated in the E&J model. We outline the main computational and theoretical differences between the E&J and T&W approaches, present new simulation results, and discuss implications for the development of a computational cognitive theory of statistical learning.

Bibliographic note

This is the author’s version of a work that was accepted for publication in Cognition. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Cognition, 230, 2023 DOI: 10.1016/j.cognition.2022.105176