Home > Research > Publications & Outputs > Noise robustness of communications provided by ...

Associated organisational unit

Electronic data

  • ICNF17_IEEE_CommCF3

    Rights statement: ©2017 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

    Accepted author manuscript, 1.51 MB, PDF document

    Available under license: CC BY-NC: Creative Commons Attribution-NonCommercial 4.0 International License

Links

Text available via DOI:

View graph of relations

Noise robustness of communications provided by coupling-function-encryption and dynamical Bayesian inference

Research output: Contribution in Book/Report/Proceedings - With ISBN/ISSNConference contribution/Paperpeer-review

Published

Standard

Noise robustness of communications provided by coupling-function-encryption and dynamical Bayesian inference. / Stankovski, Tomislav; McClintock, Peter V.E.; Stefanovska, Aneta.
2017 International Conference on Noise and Fluctuations, ICNF 2017. Institute of Electrical and Electronics Engineers Inc., 2017. 7985977 (2017 International Conference on Noise and Fluctuations, ICNF 2017).

Research output: Contribution in Book/Report/Proceedings - With ISBN/ISSNConference contribution/Paperpeer-review

Harvard

Stankovski, T, McClintock, PVE & Stefanovska, A 2017, Noise robustness of communications provided by coupling-function-encryption and dynamical Bayesian inference. in 2017 International Conference on Noise and Fluctuations, ICNF 2017., 7985977, 2017 International Conference on Noise and Fluctuations, ICNF 2017, Institute of Electrical and Electronics Engineers Inc., 2017 International Conference on Noise and Fluctuations, ICNF 2017, Vilnius, Lithuania, 20/06/17. https://doi.org/10.1109/ICNF.2017.7985977

APA

Stankovski, T., McClintock, P. V. E., & Stefanovska, A. (2017). Noise robustness of communications provided by coupling-function-encryption and dynamical Bayesian inference. In 2017 International Conference on Noise and Fluctuations, ICNF 2017 Article 7985977 (2017 International Conference on Noise and Fluctuations, ICNF 2017). Institute of Electrical and Electronics Engineers Inc.. https://doi.org/10.1109/ICNF.2017.7985977

Vancouver

Stankovski T, McClintock PVE, Stefanovska A. Noise robustness of communications provided by coupling-function-encryption and dynamical Bayesian inference. In 2017 International Conference on Noise and Fluctuations, ICNF 2017. Institute of Electrical and Electronics Engineers Inc. 2017. 7985977. (2017 International Conference on Noise and Fluctuations, ICNF 2017). doi: 10.1109/ICNF.2017.7985977

Author

Stankovski, Tomislav ; McClintock, Peter V.E. ; Stefanovska, Aneta. / Noise robustness of communications provided by coupling-function-encryption and dynamical Bayesian inference. 2017 International Conference on Noise and Fluctuations, ICNF 2017. Institute of Electrical and Electronics Engineers Inc., 2017. (2017 International Conference on Noise and Fluctuations, ICNF 2017).

Bibtex

@inproceedings{2be3309291dd46efa93fc56534c06489,
title = "Noise robustness of communications provided by coupling-function-encryption and dynamical Bayesian inference",
abstract = "In addition to the need for security, everyday information exchange must be able to cope with noise and interference. We discuss the noise robustness of a recently-introduced communications protocol inspired by the human cardiorespiratory interaction, based on analysis methods originally developed for reconstructing coupling functions between oscillatory processes underlying the biological signals. Security is assured by use of multiple, time-varying, coupling functions between two or more dynamical systems, and the protocol allows for multiplexing of the information transfer. We focus on the exceptional noise-robustness that arises from the application of dynamical Bayesian inference to the stochastic differential equations. A particular advantage of the protocol is that it facilitates an effective separation between the deterministic information signals and the dynamical (channel) noise perturbations. We define reliability in terms of the bit-error-rate (BER) as a function of noise strength, expressed as the signal-to-noise ratio (SNR). We present results confirming that the coupling function protocol is highly noise robust, and that it outperforms other known communications protocols. In the broader context, we point out that this use of coupling functions between dynamical systems is a modular construct that can be extended to implement a range of different encryption concepts. Similarly, the method of dynamical Bayesian inference carries wider implications for future applications to noise reduction in communications using other protocols.",
keywords = "coupling functions, dynamical Bayesian inference, encryption, noise, Secure communication",
author = "Tomislav Stankovski and McClintock, {Peter V.E.} and Aneta Stefanovska",
note = "{\textcopyright}2017 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE. ; 2017 International Conference on Noise and Fluctuations, ICNF 2017 ; Conference date: 20-06-2017 Through 23-06-2017",
year = "2017",
month = jul,
day = "19",
doi = "10.1109/ICNF.2017.7985977",
language = "English",
series = "2017 International Conference on Noise and Fluctuations, ICNF 2017",
publisher = "Institute of Electrical and Electronics Engineers Inc.",
booktitle = "2017 International Conference on Noise and Fluctuations, ICNF 2017",

}

RIS

TY - GEN

T1 - Noise robustness of communications provided by coupling-function-encryption and dynamical Bayesian inference

AU - Stankovski, Tomislav

AU - McClintock, Peter V.E.

AU - Stefanovska, Aneta

N1 - ©2017 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

PY - 2017/7/19

Y1 - 2017/7/19

N2 - In addition to the need for security, everyday information exchange must be able to cope with noise and interference. We discuss the noise robustness of a recently-introduced communications protocol inspired by the human cardiorespiratory interaction, based on analysis methods originally developed for reconstructing coupling functions between oscillatory processes underlying the biological signals. Security is assured by use of multiple, time-varying, coupling functions between two or more dynamical systems, and the protocol allows for multiplexing of the information transfer. We focus on the exceptional noise-robustness that arises from the application of dynamical Bayesian inference to the stochastic differential equations. A particular advantage of the protocol is that it facilitates an effective separation between the deterministic information signals and the dynamical (channel) noise perturbations. We define reliability in terms of the bit-error-rate (BER) as a function of noise strength, expressed as the signal-to-noise ratio (SNR). We present results confirming that the coupling function protocol is highly noise robust, and that it outperforms other known communications protocols. In the broader context, we point out that this use of coupling functions between dynamical systems is a modular construct that can be extended to implement a range of different encryption concepts. Similarly, the method of dynamical Bayesian inference carries wider implications for future applications to noise reduction in communications using other protocols.

AB - In addition to the need for security, everyday information exchange must be able to cope with noise and interference. We discuss the noise robustness of a recently-introduced communications protocol inspired by the human cardiorespiratory interaction, based on analysis methods originally developed for reconstructing coupling functions between oscillatory processes underlying the biological signals. Security is assured by use of multiple, time-varying, coupling functions between two or more dynamical systems, and the protocol allows for multiplexing of the information transfer. We focus on the exceptional noise-robustness that arises from the application of dynamical Bayesian inference to the stochastic differential equations. A particular advantage of the protocol is that it facilitates an effective separation between the deterministic information signals and the dynamical (channel) noise perturbations. We define reliability in terms of the bit-error-rate (BER) as a function of noise strength, expressed as the signal-to-noise ratio (SNR). We present results confirming that the coupling function protocol is highly noise robust, and that it outperforms other known communications protocols. In the broader context, we point out that this use of coupling functions between dynamical systems is a modular construct that can be extended to implement a range of different encryption concepts. Similarly, the method of dynamical Bayesian inference carries wider implications for future applications to noise reduction in communications using other protocols.

KW - coupling functions

KW - dynamical Bayesian inference

KW - encryption

KW - noise

KW - Secure communication

U2 - 10.1109/ICNF.2017.7985977

DO - 10.1109/ICNF.2017.7985977

M3 - Conference contribution/Paper

AN - SCOPUS:85027982706

T3 - 2017 International Conference on Noise and Fluctuations, ICNF 2017

BT - 2017 International Conference on Noise and Fluctuations, ICNF 2017

PB - Institute of Electrical and Electronics Engineers Inc.

T2 - 2017 International Conference on Noise and Fluctuations, ICNF 2017

Y2 - 20 June 2017 through 23 June 2017

ER -