Submitted manuscript, 476 KB, PDF document
Available under license: Other
Final published version
Research output: Contribution in Book/Report/Proceedings - With ISBN/ISSN › Chapter (peer-reviewed) › peer-review
Research output: Contribution in Book/Report/Proceedings - With ISBN/ISSN › Chapter (peer-reviewed) › peer-review
}
TY - CHAP
T1 - Obtaining (Ɛ,δ)-differential privacy guarantees when using the Poisson distribution to synthesize tabular data
AU - Jackson, James
AU - Mitra, Robin
AU - Francis, Brian
AU - Dove, Iain
PY - 2024/9/12
Y1 - 2024/9/12
N2 - We show that differential privacy type guarantees can be obtained when using a Poisson synthesis mechanism to protect counts incontingency tables. Specifically, we show how to obtain (ϵ, δ)-probabilisticdifferential privacy guarantees via the Poisson distribution’s cumulativedistribution function). We demonstrate this Poisson synthesis mechanismempirically with the synthesis of the ESCrep data set, an administrativetype database that resembles the English School Census.
AB - We show that differential privacy type guarantees can be obtained when using a Poisson synthesis mechanism to protect counts incontingency tables. Specifically, we show how to obtain (ϵ, δ)-probabilisticdifferential privacy guarantees via the Poisson distribution’s cumulativedistribution function). We demonstrate this Poisson synthesis mechanismempirically with the synthesis of the ESCrep data set, an administrativetype database that resembles the English School Census.
KW - Differential Privacy
KW - Synthetic Data
KW - tabular data
U2 - 10.1007/978-3-031-69651-0_7
DO - 10.1007/978-3-031-69651-0_7
M3 - Chapter (peer-reviewed)
SN - 9783031696503
T3 - Lecture Notes in Computer Science
SP - 102
EP - 112
BT - Privacy in Statistical Databases – PSD2024
A2 - Domingo-Ferrer, Josep
A2 - Önen, Melek
PB - Springer
CY - Cham
ER -