Research output: Contribution to Journal/Magazine › Journal article › peer-review
Research output: Contribution to Journal/Magazine › Journal article › peer-review
}
TY - JOUR
T1 - On 321-avoiding permutations in affine Weyl groups.
AU - Green, Richard
PY - 2002/5
Y1 - 2002/5
N2 - We introduce the notion of 321-avoiding permutations in the affine Weyl group W of type A n – 1 by considering the group as a George group (in the sense of Eriksson and Eriksson). This enables us to generalize a result of Billey, Jockusch and Stanley to show that the 321-avoiding permutations in W coincide with the set of fully commutative elements; in other words, any two reduced expressions for a 321-avoiding element of W (considered as a Coxeter group) may be obtained from each other by repeated applications of short braid relations. Using Shi's characterization of the Kazhdan–Lusztig cells in the group W, we use our main result to show that the fully commutative elements of W form a union of Kazhdan–Lusztig cells. This phenomenon has been studied by the author and J. Losonczy for finite Coxeter groups, and is interesting partly because it allows certain structure constants for the Kazhdan–Lusztig basis of the associated Hecke algebra to be computed combinatorially. We also show how some of our results can be generalized to a larger group of permutations, the extended affine Weyl group associated to GL n ()
AB - We introduce the notion of 321-avoiding permutations in the affine Weyl group W of type A n – 1 by considering the group as a George group (in the sense of Eriksson and Eriksson). This enables us to generalize a result of Billey, Jockusch and Stanley to show that the 321-avoiding permutations in W coincide with the set of fully commutative elements; in other words, any two reduced expressions for a 321-avoiding element of W (considered as a Coxeter group) may be obtained from each other by repeated applications of short braid relations. Using Shi's characterization of the Kazhdan–Lusztig cells in the group W, we use our main result to show that the fully commutative elements of W form a union of Kazhdan–Lusztig cells. This phenomenon has been studied by the author and J. Losonczy for finite Coxeter groups, and is interesting partly because it allows certain structure constants for the Kazhdan–Lusztig basis of the associated Hecke algebra to be computed combinatorially. We also show how some of our results can be generalized to a larger group of permutations, the extended affine Weyl group associated to GL n ()
KW - pattern avoidance - Kazhdan-Lusztig cells
U2 - 10.1023/A:1015012524524
DO - 10.1023/A:1015012524524
M3 - Journal article
VL - 15
SP - 241
EP - 252
JO - Journal of Algebraic Combinatorics
JF - Journal of Algebraic Combinatorics
SN - 0925-9899
IS - 3
ER -