We present a generalization to the Harsanyi solution for non-transferable utility (NTU) games based on non-symmetry among the players. Our notion of non-symmetry is presented by a configuration of weights which correspond to players' relative bargaining power in various coalitions. We show not only that our solution (i.e., the bargaining position solution) generalizes the Harsanyi solution, (and thus also the Shapley value), but also that almost all the non-symmetric generalizations of the Shapley value for transferable utility games known in the literature are in fact bargaining position solutions. We also show that the non-symmetric Nash solution for the bargaining problem is also a special case of our general solution. We use our general representation of non-symmetry to make a detailed comparison of all the recent extensions of the Shapley value using both a direct and an axiomatic approach. © 1992 Physica-Verlag.