Rights statement: ©2020 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.
Accepted author manuscript, 3.21 MB, PDF document
Available under license: CC BY-NC: Creative Commons Attribution-NonCommercial 4.0 International License
Final published version
Research output: Contribution to Journal/Magazine › Journal article › peer-review
Research output: Contribution to Journal/Magazine › Journal article › peer-review
}
TY - JOUR
T1 - On Optimal Beamforming Design for Downlink MISO NOMA Systems
AU - Navaie, Keivan
N1 - ©2020 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.
PY - 2020/1/14
Y1 - 2020/1/14
N2 - This work focuses on the beamforming design for downlink multiple-input single-output (MISO) nonorthogonal multiple access (NOMA) systems. The beamforming vectors are designed by solving a total transmission power minimization (TPM) problem with quality-of-service (QoS) constraints. In order to solve the proposed nonconvex optimization problem, we provide an efficient method using semidefinite relaxation. Moreover, for the first time, we characterize the optimal beam- forming in a closed form with quasi-degradation condition, which is proven to achieve the same performance as dirty- paper coding (DPC). For the special case with two users, we further show that the original nonconvex TPM problem can be equivalently transferred into a convex optimization problem and easily solved via standard optimization tools. In addition, the optimal beamforming is also characterized in a closed form and we show that it achieves the same performance as the DPC. In the simulation, we show that our proposed optimal NOMA beamforming outperforms OMA schemes and can even achieve the same performance as DPC. Our solutions dramatically simplifies the problem of beamforming design in the downlink MISO NOMA systems and improve the system performance.
AB - This work focuses on the beamforming design for downlink multiple-input single-output (MISO) nonorthogonal multiple access (NOMA) systems. The beamforming vectors are designed by solving a total transmission power minimization (TPM) problem with quality-of-service (QoS) constraints. In order to solve the proposed nonconvex optimization problem, we provide an efficient method using semidefinite relaxation. Moreover, for the first time, we characterize the optimal beam- forming in a closed form with quasi-degradation condition, which is proven to achieve the same performance as dirty- paper coding (DPC). For the special case with two users, we further show that the original nonconvex TPM problem can be equivalently transferred into a convex optimization problem and easily solved via standard optimization tools. In addition, the optimal beamforming is also characterized in a closed form and we show that it achieves the same performance as the DPC. In the simulation, we show that our proposed optimal NOMA beamforming outperforms OMA schemes and can even achieve the same performance as DPC. Our solutions dramatically simplifies the problem of beamforming design in the downlink MISO NOMA systems and improve the system performance.
U2 - 10.1109/TVT.2020.2966629
DO - 10.1109/TVT.2020.2966629
M3 - Journal article
JO - IEEE Transactions on Vehicular Technology
JF - IEEE Transactions on Vehicular Technology
SN - 0018-9545
ER -