Home > Research > Publications & Outputs > On the distribution of wave height in shallow w...

Links

Text available via DOI:

View graph of relations

On the distribution of wave height in shallow water

Research output: Contribution to journalJournal articlepeer-review

Published
Close
<mark>Journal publication date</mark>1/05/2016
<mark>Journal</mark>Coastal Engineering
Volume111
Number of pages11
Pages (from-to)39-49
Publication StatusPublished
Early online date23/02/16
<mark>Original language</mark>English

Abstract

The statistical distribution of the height of sea waves in deep water has been modelled using the Rayleigh (Longuet-Higgins, 1952) and Weibull distributions (Forristall, 1978). Depth-induced wave breaking leading to restriction on the ratio of wave height to water depth requires new parameterisations of these or other distributional forms for shallow water. Glukhovskiy (1966) proposed a Weibull parameterisation accommodating depth-limited breaking, modified by van Vledder (1991). Battjes and Groenendijk (2000) suggested a two-part Weibull-Weibull distribution. Here we propose a two-part Weibull-generalised Pareto model for wave height in shallow water, parameterised empirically in terms of sea state parameters (significant wave height, HS, local wave-number, kL, and water depth, d), using data from both laboratory and field measurements from 4 offshore locations. We are particularly concerned that the model can be applied usefully in a straightforward manner; given three pre-specified universal parameters, the model further requires values for sea state significant wave height and wave number, and water depth so that it can be applied. The model has continuous probability density, smooth cumulative distribution function, incorporates the Miche upper limit for wave heights (Miche, 1944) and adopts HS as the transition wave height from Weibull body to generalised Pareto tail forms. Accordingly, the model is effectively a new form for the breaking wave height distribution. The estimated model provides good predictive performance on laboratory and field data. © 2016 Elsevier B.V.