Home > Research > Publications & Outputs > On the Einstein-Maxwell equations for a 'stiff'...
View graph of relations

On the Einstein-Maxwell equations for a 'stiff' membrane

Research output: Contribution to Journal/MagazineJournal articlepeer-review

Published

Standard

On the Einstein-Maxwell equations for a 'stiff' membrane. / Hartley, D. H.; Onder, M.; Tucker, Robin.
In: Classical and Quantum Gravity, Vol. 6, No. 9, 09.1989, p. 1301-1309.

Research output: Contribution to Journal/MagazineJournal articlepeer-review

Harvard

Hartley, DH, Onder, M & Tucker, R 1989, 'On the Einstein-Maxwell equations for a 'stiff' membrane', Classical and Quantum Gravity, vol. 6, no. 9, pp. 1301-1309. https://doi.org/10.1088/0264-9381/6/9/014

APA

Hartley, D. H., Onder, M., & Tucker, R. (1989). On the Einstein-Maxwell equations for a 'stiff' membrane. Classical and Quantum Gravity, 6(9), 1301-1309. https://doi.org/10.1088/0264-9381/6/9/014

Vancouver

Hartley DH, Onder M, Tucker R. On the Einstein-Maxwell equations for a 'stiff' membrane. Classical and Quantum Gravity. 1989 Sept;6(9):1301-1309. doi: 10.1088/0264-9381/6/9/014

Author

Hartley, D. H. ; Onder, M. ; Tucker, Robin. / On the Einstein-Maxwell equations for a 'stiff' membrane. In: Classical and Quantum Gravity. 1989 ; Vol. 6, No. 9. pp. 1301-1309.

Bibtex

@article{734ad5040ac940618bbaf7878964b6d6,
title = "On the Einstein-Maxwell equations for a 'stiff' membrane",
abstract = "The Einstein-Maxwell equations are examined for a distributional stress tensor depending on the mean shape of an immersion in a manifold with a piecewise smooth metric tensor. A solution is discussed that matches an exterior Reissner-Nordstrom metric to an interior Minkowski metric. Such a solution extends the Dirac particle model to incorporate both gravitational and electromagnetic interactions. ",
author = "Hartley, {D. H.} and M. Onder and Robin Tucker",
year = "1989",
month = sep,
doi = "10.1088/0264-9381/6/9/014",
language = "English",
volume = "6",
pages = "1301--1309",
journal = "Classical and Quantum Gravity",
issn = "0264-9381",
publisher = "IOP Publishing",
number = "9",

}

RIS

TY - JOUR

T1 - On the Einstein-Maxwell equations for a 'stiff' membrane

AU - Hartley, D. H.

AU - Onder, M.

AU - Tucker, Robin

PY - 1989/9

Y1 - 1989/9

N2 - The Einstein-Maxwell equations are examined for a distributional stress tensor depending on the mean shape of an immersion in a manifold with a piecewise smooth metric tensor. A solution is discussed that matches an exterior Reissner-Nordstrom metric to an interior Minkowski metric. Such a solution extends the Dirac particle model to incorporate both gravitational and electromagnetic interactions.

AB - The Einstein-Maxwell equations are examined for a distributional stress tensor depending on the mean shape of an immersion in a manifold with a piecewise smooth metric tensor. A solution is discussed that matches an exterior Reissner-Nordstrom metric to an interior Minkowski metric. Such a solution extends the Dirac particle model to incorporate both gravitational and electromagnetic interactions.

U2 - 10.1088/0264-9381/6/9/014

DO - 10.1088/0264-9381/6/9/014

M3 - Journal article

VL - 6

SP - 1301

EP - 1309

JO - Classical and Quantum Gravity

JF - Classical and Quantum Gravity

SN - 0264-9381

IS - 9

ER -