Home > Research > Publications & Outputs > Optimisation of large-radius jet reconstruction...

Links

Text available via DOI:

View graph of relations

Optimisation of large-radius jet reconstruction for the ATLAS detector in 13 TeV proton–proton collisions

Research output: Contribution to Journal/MagazineJournal articlepeer-review

Published
Article number334
<mark>Journal publication date</mark>19/04/2021
<mark>Journal</mark>European Physical Journal C: Particles and Fields
Issue number4
Volume81
Number of pages47
Publication StatusPublished
<mark>Original language</mark>English

Abstract

Jet substructure has provided new opportunities for searches and measurements at the LHC, and has seen continuous development since the optimization of the large-radius jet definition used by ATLAS was performed during Run 1. A range of new inputs to jet reconstruction, pile-up mitigation techniques and jet grooming algorithms motivate an optimisation of large-radius jet reconstruction for ATLAS. In this paper, this optimisation procedure is presented, and the performance of a wide range of large-radius jet definitions is compared. The relative performance of these jet definitions is assessed using metrics such as their pileup stability, ability to identify hadronically decaying W bosons and top quarks with large transverse momenta. A new type of jet input object, called a ‘unified flow object’ is introduced which combines calorimeter- and inner-detector-based signals in order to achieve optimal performance across a wide kinematic range. Large-radius jet definitions are identified which significantly improve on the current ATLAS baseline definition, and their modelling is studied using pp collisions recorded by the ATLAS detector at s=13TeV during 2017. © 2021, The Author(s).