Final published version
Licence: CC BY: Creative Commons Attribution 4.0 International License
Research output: Contribution to Journal/Magazine › Journal article › peer-review
Research output: Contribution to Journal/Magazine › Journal article › peer-review
}
TY - JOUR
T1 - Optimising the manufacturing of electrospun nanofibrous structures for textile applications
T2 - a machine learning approach
AU - Roldán, Elisa
AU - Reeves, Neil D.
AU - Cooper, Glen
AU - Andrews, Kirstie
PY - 2025/3/18
Y1 - 2025/3/18
N2 - Electrospun structures, known for their high porosity and surface area, can be tuned by optimising manufacturing parameters. These characteristics make them ideal for waterproof and breathable textiles, skin-like non-woven fabrics, and smart wearable bioelectronic textiles. This research aims to develop a manufacturing optimisation methodology using machine learning models to control fibre diameter and inter-fibre separation for textile applications. Polyvinyl alcohol (PVA) structures were produced with varying concentrations (10, 12, 14, 16 w/v) and different parameters such as flow rate (0.5–5 ml/h), voltage (18–25 kV), needle diameter (15–23 G), distance between needle and collector (5–11 cm), and mandrel revolution (500–3000 rpm). Data from 2560 observations of fibre diameter and inter-fibre separations were used to train 20 machine learning models. C5.0 Decision Trees and Rule-Based Models identified optimal setups, achieving high prediction accuracy for fibre diameter (0.868) and inter-fibre separation (0.861). This research advances the optimisation of electrospinning techniques for textile applications.
AB - Electrospun structures, known for their high porosity and surface area, can be tuned by optimising manufacturing parameters. These characteristics make them ideal for waterproof and breathable textiles, skin-like non-woven fabrics, and smart wearable bioelectronic textiles. This research aims to develop a manufacturing optimisation methodology using machine learning models to control fibre diameter and inter-fibre separation for textile applications. Polyvinyl alcohol (PVA) structures were produced with varying concentrations (10, 12, 14, 16 w/v) and different parameters such as flow rate (0.5–5 ml/h), voltage (18–25 kV), needle diameter (15–23 G), distance between needle and collector (5–11 cm), and mandrel revolution (500–3000 rpm). Data from 2560 observations of fibre diameter and inter-fibre separations were used to train 20 machine learning models. C5.0 Decision Trees and Rule-Based Models identified optimal setups, achieving high prediction accuracy for fibre diameter (0.868) and inter-fibre separation (0.861). This research advances the optimisation of electrospinning techniques for textile applications.
U2 - 10.1080/00405000.2025.2472089
DO - 10.1080/00405000.2025.2472089
M3 - Journal article
JO - Journal of the Textile Institute
JF - Journal of the Textile Institute
SN - 0040-5000
ER -