Home > Research > Publications & Outputs > Outline symmetric latin squares.
View graph of relations

Outline symmetric latin squares.

Research output: Contribution to Journal/MagazineJournal article

Published

Standard

Outline symmetric latin squares. / Chetwynd, Amanda G.; Hilton, A. J. W.
In: Discrete Mathematics, Vol. 97, No. 1-3, 10.12.1991, p. 101-117.

Research output: Contribution to Journal/MagazineJournal article

Harvard

Chetwynd, AG & Hilton, AJW 1991, 'Outline symmetric latin squares.', Discrete Mathematics, vol. 97, no. 1-3, pp. 101-117. https://doi.org/10.1016/0012-365X(91)90426-3

APA

Chetwynd, A. G., & Hilton, A. J. W. (1991). Outline symmetric latin squares. Discrete Mathematics, 97(1-3), 101-117. https://doi.org/10.1016/0012-365X(91)90426-3

Vancouver

Chetwynd AG, Hilton AJW. Outline symmetric latin squares. Discrete Mathematics. 1991 Dec 10;97(1-3):101-117. doi: 10.1016/0012-365X(91)90426-3

Author

Chetwynd, Amanda G. ; Hilton, A. J. W. / Outline symmetric latin squares. In: Discrete Mathematics. 1991 ; Vol. 97, No. 1-3. pp. 101-117.

Bibtex

@article{596b1ecc47ac40d28085f5daefb2049c,
title = "Outline symmetric latin squares.",
abstract = "We define two symmetrical analogues of the notion of an outline latin square; we prove that each is an amalgamation of a simple symmetrical latin square like structure; and we show that various embedding theorems are consequences of these results.",
author = "Chetwynd, {Amanda G.} and Hilton, {A. J. W.}",
year = "1991",
month = dec,
day = "10",
doi = "10.1016/0012-365X(91)90426-3",
language = "English",
volume = "97",
pages = "101--117",
journal = "Discrete Mathematics",
issn = "0012-365X",
publisher = "Elsevier",
number = "1-3",

}

RIS

TY - JOUR

T1 - Outline symmetric latin squares.

AU - Chetwynd, Amanda G.

AU - Hilton, A. J. W.

PY - 1991/12/10

Y1 - 1991/12/10

N2 - We define two symmetrical analogues of the notion of an outline latin square; we prove that each is an amalgamation of a simple symmetrical latin square like structure; and we show that various embedding theorems are consequences of these results.

AB - We define two symmetrical analogues of the notion of an outline latin square; we prove that each is an amalgamation of a simple symmetrical latin square like structure; and we show that various embedding theorems are consequences of these results.

U2 - 10.1016/0012-365X(91)90426-3

DO - 10.1016/0012-365X(91)90426-3

M3 - Journal article

VL - 97

SP - 101

EP - 117

JO - Discrete Mathematics

JF - Discrete Mathematics

SN - 0012-365X

IS - 1-3

ER -