Final published version
Licence: CC BY: Creative Commons Attribution 4.0 International License
Research output: Contribution to Journal/Magazine › Journal article › peer-review
Research output: Contribution to Journal/Magazine › Journal article › peer-review
}
TY - JOUR
T1 - Overcoming the dephasing limit in multiple-pulse laser wakefield acceleration
AU - Sadler, James D.
AU - Arran, Christopher
AU - Li, Hui
AU - Flippo, Kirk A.
N1 - Publisher Copyright: © 2020 authors. Published by the American Physical Society.
PY - 2020/2/21
Y1 - 2020/2/21
N2 - The electric field in laser-driven plasma wakefield acceleration is orders of magnitude higher than conventional radio-frequency cavities, but the energy gain is limited by dephasing between the ultrarelativistic electron bunch and the wakefield, which travels at the laser group velocity. We present a way to overcome this limit within a single plasma stage. The amplitude of the wakefield behind a train of laser pulses can be controlled in-flight by modulating the density profile. This creates a succession of resonant laser-plasma accelerator sections and nonresonant drift sections, within which the wakefield disappears and the electrons rephase. A two-dimensional particle-in-cell simulation with four 2.5 TW laser pulses produces a 50 MeV electron energy gain, four times that obtained from a uniform plasma. Although laser redshift prevents operation in the blowout regime, the technique offers increased energy gain for accelerators limited to the linear regime by the available laser power. This is particularly relevant for laser-plasma x-ray sources capable of operating at high repetition rates, which are highly sought after.
AB - The electric field in laser-driven plasma wakefield acceleration is orders of magnitude higher than conventional radio-frequency cavities, but the energy gain is limited by dephasing between the ultrarelativistic electron bunch and the wakefield, which travels at the laser group velocity. We present a way to overcome this limit within a single plasma stage. The amplitude of the wakefield behind a train of laser pulses can be controlled in-flight by modulating the density profile. This creates a succession of resonant laser-plasma accelerator sections and nonresonant drift sections, within which the wakefield disappears and the electrons rephase. A two-dimensional particle-in-cell simulation with four 2.5 TW laser pulses produces a 50 MeV electron energy gain, four times that obtained from a uniform plasma. Although laser redshift prevents operation in the blowout regime, the technique offers increased energy gain for accelerators limited to the linear regime by the available laser power. This is particularly relevant for laser-plasma x-ray sources capable of operating at high repetition rates, which are highly sought after.
U2 - 10.1103/PHYSREVACCELBEAMS.23.021303
DO - 10.1103/PHYSREVACCELBEAMS.23.021303
M3 - Journal article
AN - SCOPUS:85097825862
VL - 23
JO - Physical Review Accelerators and Beams
JF - Physical Review Accelerators and Beams
SN - 2469-9888
IS - 2
M1 - 021303
ER -