Final published version
Licence: CC BY: Creative Commons Attribution 4.0 International License
Research output: Contribution to Journal/Magazine › Review article › peer-review
Research output: Contribution to Journal/Magazine › Review article › peer-review
}
TY - JOUR
T1 - Oxides for Rectenna Technology
AU - Mitrovic, Ivonna Z.
AU - Almalki, S.
AU - Tekin, Serdar B.
AU - Sedghi, Naser
AU - Chalker, Paul R.
AU - Hall, Stephen
PY - 2021/9/10
Y1 - 2021/9/10
N2 - The quest to harvest untapped renewable infrared energy sources has led to significant research effort in design, fabrication and optimization of a self-biased rectenna that can operate without external bias voltage. At the heart of its design is the engineering of a high-frequency rectifier that can convert terahertz and infrared alternating current (AC) signals to usable direct current (DC). The Metal Insulator Metal (MIM) diode has been considered as one of the ideal candidates for the rectenna system. Its unparalleled ability to have a high response time is due to the fast, femtosecond tunneling process that governs current transport. This paper presents an overview of single, double and triple insulator MIM diodes that have been fabricated so far, in particular focusing on reviewing key figures of merit, such as zero-bias responsivity ( β 0), zero-bias dynamic resistance ( R 0) and asymmetry. The two major oxide contenders for MI nM diodes have been NiO and Al 2O 3, in combination with HfO 2, Ta 2O 5, Nb 2O 5, ZnO and TiO 2. The latter oxide has also been used in combination with Co 3O 4 and TiO x. The most advanced rectennas based on MI 2M diodes have shown that optimal ( β 0 and R 0) can be achieved by carefully tailoring fabrication processes to control oxide stoichiometry and thicknesses to sub-nanometer accuracy.
AB - The quest to harvest untapped renewable infrared energy sources has led to significant research effort in design, fabrication and optimization of a self-biased rectenna that can operate without external bias voltage. At the heart of its design is the engineering of a high-frequency rectifier that can convert terahertz and infrared alternating current (AC) signals to usable direct current (DC). The Metal Insulator Metal (MIM) diode has been considered as one of the ideal candidates for the rectenna system. Its unparalleled ability to have a high response time is due to the fast, femtosecond tunneling process that governs current transport. This paper presents an overview of single, double and triple insulator MIM diodes that have been fabricated so far, in particular focusing on reviewing key figures of merit, such as zero-bias responsivity ( β 0), zero-bias dynamic resistance ( R 0) and asymmetry. The two major oxide contenders for MI nM diodes have been NiO and Al 2O 3, in combination with HfO 2, Ta 2O 5, Nb 2O 5, ZnO and TiO 2. The latter oxide has also been used in combination with Co 3O 4 and TiO x. The most advanced rectennas based on MI 2M diodes have shown that optimal ( β 0 and R 0) can be achieved by carefully tailoring fabrication processes to control oxide stoichiometry and thicknesses to sub-nanometer accuracy.
KW - rectenna
KW - MIM
KW - diode
KW - terahertz
KW - infrared
KW - oxide
KW - energy harvesting
U2 - 10.3390/ma14185218
DO - 10.3390/ma14185218
M3 - Review article
C2 - 34576441
VL - 14
JO - Materials
JF - Materials
SN - 1996-1944
IS - 18
M1 - 5218
ER -