Final published version
Licence: CC BY: Creative Commons Attribution 4.0 International License
Research output: Contribution to Journal/Magazine › Journal article › peer-review
Research output: Contribution to Journal/Magazine › Journal article › peer-review
}
TY - JOUR
T1 - Parameter inference for degenerate diffusion processes
AU - Iguchi, Y.
AU - Beskos, A.
AU - Graham, Matthew
PY - 2024/8/31
Y1 - 2024/8/31
N2 - We study parametric inference for ergodic diffusion processes with a degenerate diffusion matrix. Existing research focuses on a particular class of hypo-elliptic Stochastic Differential Equations (SDEs), with components split into ‘rough’/‘smooth’ and noise from rough components propagating directly onto smooth ones, but some critical model classes arising in applications have yet to be explored. We aim to cover this gap, thus analyse the highly degenerate class of SDEs, where components split into further sub-groups. Such models include e.g. the notable case of generalised Langevin equations. We propose a tailored time-discretisation scheme and provide asymptotic results supporting our scheme in the context of high-frequency, full observations. The proposed discretisation scheme is applicable in much more general data regimes and is shown to overcome biases via simulation studies also in the practical case when only a smooth component is observed. Joint consideration of our study for highly degenerate SDEs and existing research provides a general ‘recipe’ for the development of time-discretisation schemes to be used within statistical methods for general classes of hypo-elliptic SDEs.
AB - We study parametric inference for ergodic diffusion processes with a degenerate diffusion matrix. Existing research focuses on a particular class of hypo-elliptic Stochastic Differential Equations (SDEs), with components split into ‘rough’/‘smooth’ and noise from rough components propagating directly onto smooth ones, but some critical model classes arising in applications have yet to be explored. We aim to cover this gap, thus analyse the highly degenerate class of SDEs, where components split into further sub-groups. Such models include e.g. the notable case of generalised Langevin equations. We propose a tailored time-discretisation scheme and provide asymptotic results supporting our scheme in the context of high-frequency, full observations. The proposed discretisation scheme is applicable in much more general data regimes and is shown to overcome biases via simulation studies also in the practical case when only a smooth component is observed. Joint consideration of our study for highly degenerate SDEs and existing research provides a general ‘recipe’ for the development of time-discretisation schemes to be used within statistical methods for general classes of hypo-elliptic SDEs.
U2 - 10.1016/j.spa.2024.104384
DO - 10.1016/j.spa.2024.104384
M3 - Journal article
VL - 174
JO - Stochastic Processes and their Applications
JF - Stochastic Processes and their Applications
SN - 0304-4149
M1 - 104384
ER -