Final published version
Research output: Contribution to Journal/Magazine › Journal article › peer-review
Research output: Contribution to Journal/Magazine › Journal article › peer-review
}
TY - JOUR
T1 - Perivascular drainage of solutes is impaired in the ageing mouse brain and in the presence of cerebral amyloid angiopathy
AU - Hawkes, Cheryl A.
AU - Härtig, Wolfgang
AU - Kacza, Johannes
AU - Schliebs, Reinhard
AU - Weller, Roy O.
AU - Nicoll, James A.
AU - Carare, Roxana O.
PY - 2011/4/1
Y1 - 2011/4/1
N2 - The deposition of amyloid-β (Aβ) peptides in the walls of leptomeningeal and cortical blood vessels as cerebral amyloid angiopathy (CAA) is present in normal ageing and the majority of Alzheimer's disease (AD) brains. The failure of clearance mechanisms to eliminate Aβ from the brain contributes to the development of sporadic CAA and AD. Here, we investigated the effects of CAA and ageing on the pattern of perivascular drainage of solutes in the brains of naïve mice and in the Tg2576 mouse model of AD. We report that drainage of small molecular weight dextran along cerebrovascular basement membranes is impaired in the hippocampal capillaries and arteries of 22-month-old wild-type mice compared to 3- and 7-month-old animals, which was associated with age-dependent changes in capillary density. Age-related alterations in the levels of laminin, fibronectin and perlecan in vascular basement membranes were also noted in wild-type mice. Furthermore, dextran was observed in the walls of veins of Tg2576 mice in the presence of CAA, suggesting that deposition of Aβ in vessel walls disrupts the normal route of elimination of solutes from the brain parenchyma. These data support the hypothesis that perivascular solute drainage from the brain is altered both in the ageing brain and as a consequence of CAA. These findings have implications for the success of therapeutic strategies for the treatment of AD that rely upon the health of the ageing cerebral vasculature.
AB - The deposition of amyloid-β (Aβ) peptides in the walls of leptomeningeal and cortical blood vessels as cerebral amyloid angiopathy (CAA) is present in normal ageing and the majority of Alzheimer's disease (AD) brains. The failure of clearance mechanisms to eliminate Aβ from the brain contributes to the development of sporadic CAA and AD. Here, we investigated the effects of CAA and ageing on the pattern of perivascular drainage of solutes in the brains of naïve mice and in the Tg2576 mouse model of AD. We report that drainage of small molecular weight dextran along cerebrovascular basement membranes is impaired in the hippocampal capillaries and arteries of 22-month-old wild-type mice compared to 3- and 7-month-old animals, which was associated with age-dependent changes in capillary density. Age-related alterations in the levels of laminin, fibronectin and perlecan in vascular basement membranes were also noted in wild-type mice. Furthermore, dextran was observed in the walls of veins of Tg2576 mice in the presence of CAA, suggesting that deposition of Aβ in vessel walls disrupts the normal route of elimination of solutes from the brain parenchyma. These data support the hypothesis that perivascular solute drainage from the brain is altered both in the ageing brain and as a consequence of CAA. These findings have implications for the success of therapeutic strategies for the treatment of AD that rely upon the health of the ageing cerebral vasculature.
KW - Alzheimer's disease
KW - Amyloid-β
KW - Basement membranes
KW - Cerebral amyloid angiopathy
KW - Cerebral vasculature
KW - Perivascular drainage
U2 - 10.1007/s00401-011-0801-7
DO - 10.1007/s00401-011-0801-7
M3 - Journal article
C2 - 21259015
AN - SCOPUS:79954623282
VL - 121
SP - 431
EP - 443
JO - Acta Neuropathologica
JF - Acta Neuropathologica
SN - 0001-6322
IS - 4
ER -