Coherence measures the similarity of progression of phases between oscillations or waves. When applied to multi-scale, nonstationary dynamics with time-varying amplitudes and frequencies, high values of coherence provide a useful indication of interactions, which might otherwise go unnoticed. However, the choice of analyzing coherence based on phases and amplitudes (amplitude-weighted phase coherence) vs only phases (phase coherence) has long been seen as arbitrary. Here, we review the concept of coherence and focus on time-localized methods of analysis, considering both phase coherence and amplitude-weighted phase coherence. We discuss the importance of using time-localized analysis and illustrate the methods and their practicalities on both numerically modeled and real time-series. The results show that phase coherence is more robust than amplitude-weighted phase coherence to both noise perturbations and movement artifacts. The results also have wider implications for the analysis of real data and the interpretation of physical systems.