Final published version
Licence: CC BY: Creative Commons Attribution 4.0 International License
Research output: Contribution to Journal/Magazine › Journal article › peer-review
Research output: Contribution to Journal/Magazine › Journal article › peer-review
}
TY - JOUR
T1 - Photochemical impacts of haze pollution in an urban environment
AU - Hollaway, Michael
AU - Wild, Oliver
AU - Yang, Ting
AU - Sun, Yele
AU - Xu, Weiqi
AU - Xie, Conghui
AU - Whalley, Lisa
AU - Slater, Eloise
AU - Heard, Dwayne
AU - Liu, Dantong
PY - 2019/8/1
Y1 - 2019/8/1
N2 - Rapid economic growth in China over the past 30 years has resulted in significant increases in the concentrations of small particulates (PM2.5 ) over the city of Beijing. In addition to health problems, high aerosol loading can impact visibility and thus reduce photolysis rates over the city leading to potential implications for photochemistry. Photolysis rates are highly sensitive not only to the vertical distribution of aerosols but also to their composition as this can impact how the incoming solar radiation is scattered or absorbed. This study, for the first time, uses aerosol composition measurements and lidar optical depth to drive the Fast-JX photolysis scheme and quantify the photochemical impacts of different aerosol species during the Air Pollution and Human Health (APHH) measurement campaigns in Beijing in November–December 2016 and May–June 2017. This work demonstrates that severe haze pollution events (PM2.5 > 75 μgm-3 ) occur during both winter and summer leading to reductions in O3 photolysis rates of 27–34 % (greatest in winter) and reductions in NO2 photolysis of 40–66 % (greatest in summer) at the surface. It also shows that in spite of much lower PM2.5 concentrations in the summer months, the absolute changes in photolysis rates are larger for both O3 and NO2 . In the winter absorbing species such as black carbon dominate the photolysis response to aerosols leading to mean reductions in J[O1 D] and J[NO2 ] in the lowest 1 km of 24 % and 23 % respectively. In contrast in the summer, scattering aerosol such as organic matter dominate the response leading to mean decreases of 2–3 % at the surface and increases of 8–10 % at higher altitudes (3–4 km). During these haze events in both campaigns, the influence of aerosol on photolysis rates dominates over that from clouds. These large impacts on photochemistry can have significant implications for concentrations of important atmospheric oxidants such as the hydroxyl radical. Idealised photochemical box model studies show that such large impacts on photochemistry could lead to a 12 % reduction in surface O3 (3 % for OH) due to haze pollution. This highlights that PM2.5 mitigation strategies could have important implications for the oxidation capacity of the atmosphere both at the surface and in the free troposphere.
AB - Rapid economic growth in China over the past 30 years has resulted in significant increases in the concentrations of small particulates (PM2.5 ) over the city of Beijing. In addition to health problems, high aerosol loading can impact visibility and thus reduce photolysis rates over the city leading to potential implications for photochemistry. Photolysis rates are highly sensitive not only to the vertical distribution of aerosols but also to their composition as this can impact how the incoming solar radiation is scattered or absorbed. This study, for the first time, uses aerosol composition measurements and lidar optical depth to drive the Fast-JX photolysis scheme and quantify the photochemical impacts of different aerosol species during the Air Pollution and Human Health (APHH) measurement campaigns in Beijing in November–December 2016 and May–June 2017. This work demonstrates that severe haze pollution events (PM2.5 > 75 μgm-3 ) occur during both winter and summer leading to reductions in O3 photolysis rates of 27–34 % (greatest in winter) and reductions in NO2 photolysis of 40–66 % (greatest in summer) at the surface. It also shows that in spite of much lower PM2.5 concentrations in the summer months, the absolute changes in photolysis rates are larger for both O3 and NO2 . In the winter absorbing species such as black carbon dominate the photolysis response to aerosols leading to mean reductions in J[O1 D] and J[NO2 ] in the lowest 1 km of 24 % and 23 % respectively. In contrast in the summer, scattering aerosol such as organic matter dominate the response leading to mean decreases of 2–3 % at the surface and increases of 8–10 % at higher altitudes (3–4 km). During these haze events in both campaigns, the influence of aerosol on photolysis rates dominates over that from clouds. These large impacts on photochemistry can have significant implications for concentrations of important atmospheric oxidants such as the hydroxyl radical. Idealised photochemical box model studies show that such large impacts on photochemistry could lead to a 12 % reduction in surface O3 (3 % for OH) due to haze pollution. This highlights that PM2.5 mitigation strategies could have important implications for the oxidation capacity of the atmosphere both at the surface and in the free troposphere.
KW - Photolysis
KW - Haze
KW - Air Pollution
KW - Beijing
U2 - 10.5194/acp-19-9699-2019
DO - 10.5194/acp-19-9699-2019
M3 - Journal article
VL - 19
SP - 9699
EP - 9714
JO - Atmospheric Chemistry and Physics
JF - Atmospheric Chemistry and Physics
SN - 1680-7316
IS - 15
ER -