Final published version
Research output: Contribution to Journal/Magazine › Journal article › peer-review
Research output: Contribution to Journal/Magazine › Journal article › peer-review
}
TY - JOUR
T1 - Progress and Insight of Van der Waals Heterostructures Containing Interlayer Transition for Near Infrared Photodetectors
AU - Ahmad, Waqas
AU - Pan, Liang
AU - Khan, Karim
AU - Jia, Lingpu
AU - Zhuang, Qiandong
AU - Wang, Zhiming
PY - 2023/3/14
Y1 - 2023/3/14
N2 - Van der Waals (vdWs) heterostructures enable bandgap engineering of different 2D materials to realize the interlayer transition via type-II band alignment leading to broaden spectrum that is beyond the cut-off wavelength of individual 2D materials. Interlayer transition has a significant effect on the optoelectronic performance of vdWs heterostructure devices, and strong interlayer transition in 2D vdWs heterojunction is always demandable for sufficient charge transfer and rapid speed response. Herein, a state-of-the-art review is presented on recent progress on interlayer transition in vdWs heterostructures for near-infrared (NIR) photodetectors. First, the general synthesis techniques for vdWs heterostructures, band alignments in the vdWs heterostructures are provided. Then, the mechanism of interlayer transition in vdWs heterostructure and recent progress on interlayer transition in vdWs heterostructures for NIR photodetectors are summarized. Afterward, some worthy applications of NIR photodetectors are reviewed in related areas of this topic. At the last, an outlook, challenges, and future research directions of vdWs heterostructures for photodetectors at broaden response spectrum are presented.
AB - Van der Waals (vdWs) heterostructures enable bandgap engineering of different 2D materials to realize the interlayer transition via type-II band alignment leading to broaden spectrum that is beyond the cut-off wavelength of individual 2D materials. Interlayer transition has a significant effect on the optoelectronic performance of vdWs heterostructure devices, and strong interlayer transition in 2D vdWs heterojunction is always demandable for sufficient charge transfer and rapid speed response. Herein, a state-of-the-art review is presented on recent progress on interlayer transition in vdWs heterostructures for near-infrared (NIR) photodetectors. First, the general synthesis techniques for vdWs heterostructures, band alignments in the vdWs heterostructures are provided. Then, the mechanism of interlayer transition in vdWs heterostructure and recent progress on interlayer transition in vdWs heterostructures for NIR photodetectors are summarized. Afterward, some worthy applications of NIR photodetectors are reviewed in related areas of this topic. At the last, an outlook, challenges, and future research directions of vdWs heterostructures for photodetectors at broaden response spectrum are presented.
KW - Electrochemistry
KW - Condensed Matter Physics
KW - Biomaterials
KW - Electronic, Optical and Magnetic Materials
U2 - 10.1002/adfm.202300686
DO - 10.1002/adfm.202300686
M3 - Journal article
JO - Advanced Functional Materials
JF - Advanced Functional Materials
SN - 1616-301X
ER -