Home > Research > Publications & Outputs > Promotion and suppression of single-molecule co...

Associated organisational unit

Electronic data

  • Manuscript-20210709-revision_forPureSubmission

    Rights statement: This is the author’s version of a work that was accepted for publication in Matter. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Matter, 4, 11, 2021 DOI: 10.1016/j.matt.2021.08.016

    Accepted author manuscript, 4.29 MB, PDF document

    Available under license: CC BY-NC-ND: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License

Links

Text available via DOI:

View graph of relations

Promotion and suppression of single-molecule conductance by quantum interference in macrocyclic circuits

Research output: Contribution to Journal/MagazineJournal articlepeer-review

Published
Close
<mark>Journal publication date</mark>30/11/2021
<mark>Journal</mark>Matter
Issue number11
Volume4
Number of pages15
Pages (from-to)3662-3676
Publication StatusPublished
Early online date15/09/21
<mark>Original language</mark>English

Abstract

Single-molecule electronics is a sub-field of nanoelectronics in which individual devices are formed from single molecules placed between source and drain electrodes. During the past few years, scientists have demonstrated that the flow of electricity through these devices is controlled by quantum interference (QI) between electrons passing from source to drain. Their future development, however, is hampered by difficulties in controlling interference effects. Herein, we demonstrate that electron transport in tetracationic cyclophane circuits is mediated by QI between channels formed from two lowest unoccupied molecular orbitals (LUMOs), while their highest occupied molecular orbitals (HOMOs) play no significant role. Energy differences between these two LUMO channels induce constructive interference, leading to high conductance. By contrast, phase differences between these LUMO channels result in destructive interference and a suppression in overall conductance. Such a design of single-molecule circuits enables the construction of single-molecule conductors and insulators based on a single cyclophane platform.

Bibliographic note

This is the author’s version of a work that was accepted for publication in Matter. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Matter, 4, 11, 2021 DOI: 10.1016/j.matt.2021.08.016