Final published version, 604 KB, fulltext
Available under license: CC BY: Creative Commons Attribution 4.0 International License
Final published version
Licence: CC BY: Creative Commons Attribution 4.0 International License
Research output: Contribution to Journal/Magazine › Journal article › peer-review
Research output: Contribution to Journal/Magazine › Journal article › peer-review
}
TY - JOUR
T1 - Recoverable robust single machine scheduling with polyhedral uncertainty
AU - Bold, Matthew
AU - Goerigk, Marc
PY - 2024/12/19
Y1 - 2024/12/19
N2 - This paper considers a recoverable robust single-machine scheduling problem under polyhedral uncertainty with the objective of minimising the total flow time. In this setting, a decision-maker must determine a first-stage schedule subject to the uncertain job processing times. Then following the realisation of these processing times, they have the option to swap the positions of up to Δ disjoint pairs of jobs to obtain a second-stage schedule. We first formulate this scheduling problem using a general recoverable robust framework, before we examine the incremental subproblem in further detail. We prove a general result for max-weight matching problems, showing that for edge weights of a specific form, the matching polytope can be fully characterised by polynomially many constraints. We use this result to derive a matching-based compact formulation for the full problem. Further analysis of the incremental problem leads to an additional assignment-based compact formulation. Computational results on budgeted uncertainty sets compare the relative strengths of the three compact models we propose.
AB - This paper considers a recoverable robust single-machine scheduling problem under polyhedral uncertainty with the objective of minimising the total flow time. In this setting, a decision-maker must determine a first-stage schedule subject to the uncertain job processing times. Then following the realisation of these processing times, they have the option to swap the positions of up to Δ disjoint pairs of jobs to obtain a second-stage schedule. We first formulate this scheduling problem using a general recoverable robust framework, before we examine the incremental subproblem in further detail. We prove a general result for max-weight matching problems, showing that for edge weights of a specific form, the matching polytope can be fully characterised by polynomially many constraints. We use this result to derive a matching-based compact formulation for the full problem. Further analysis of the incremental problem leads to an additional assignment-based compact formulation. Computational results on budgeted uncertainty sets compare the relative strengths of the three compact models we propose.
KW - Scheduling
KW - Robust Optimization
KW - Budgeted Uncertainty
KW - Polyhedral Uncertainty
KW - Recoverable Robustness
U2 - 10.1007/s10951-024-00828-7
DO - 10.1007/s10951-024-00828-7
M3 - Journal article
VL - 28
SP - 269
EP - 287
JO - Journal of Scheduling
JF - Journal of Scheduling
SN - 1094-6136
IS - 3
ER -