Final published version
Licence: CC BY: Creative Commons Attribution 4.0 International License
Research output: Contribution to Journal/Magazine › Journal article › peer-review
Research output: Contribution to Journal/Magazine › Journal article › peer-review
}
TY - JOUR
T1 - Regime-based precipitation modeling
T2 - A spatio-temporal approach
AU - Euán, Carolina
AU - Sun, Ying
AU - Reich, Brian J.
PY - 2024/4/30
Y1 - 2024/4/30
N2 - In this paper, we propose a new regime-based model to describe spatio-temporal dynamics of precipitation data. Precipitation is one of the most essential factors for multiple human-related activities such as agriculture production. Therefore, a detailed and accurate understanding of the rain for a given region is needed. Motivated by the different formations of precipitation systems (convective, frontal, and orographic), we proposed a hierarchical regime-based spatio-temporal model for precipitation data. We use information about the values of neighboring sites to identify such regimes, allowing spatial and temporal dependence to be different among regimes. Using the Bayesian approach with R INLA, we fit our model to the Guanajuato state (Mexico) precipitation data case study to understand the spatial and temporal dependencies of precipitation in this region. Our findings show the regime-based model's versatility and compare it with the truncated Gaussian model.
AB - In this paper, we propose a new regime-based model to describe spatio-temporal dynamics of precipitation data. Precipitation is one of the most essential factors for multiple human-related activities such as agriculture production. Therefore, a detailed and accurate understanding of the rain for a given region is needed. Motivated by the different formations of precipitation systems (convective, frontal, and orographic), we proposed a hierarchical regime-based spatio-temporal model for precipitation data. We use information about the values of neighboring sites to identify such regimes, allowing spatial and temporal dependence to be different among regimes. Using the Bayesian approach with R INLA, we fit our model to the Guanajuato state (Mexico) precipitation data case study to understand the spatial and temporal dependencies of precipitation in this region. Our findings show the regime-based model's versatility and compare it with the truncated Gaussian model.
KW - Management, Monitoring, Policy and Law
KW - Computers in Earth Sciences
KW - Statistics and Probability
U2 - 10.1016/j.spasta.2024.100818
DO - 10.1016/j.spasta.2024.100818
M3 - Journal article
VL - 60
JO - Spatial Statistics
JF - Spatial Statistics
SN - 2211-6753
M1 - 100818
ER -