Home > Research > Publications & Outputs > Reproducing an extreme flood with uncertain pos...

Links

Text available via DOI:

View graph of relations

Reproducing an extreme flood with uncertain post-event information

Research output: Contribution to Journal/MagazineJournal articlepeer-review

Published

Standard

Reproducing an extreme flood with uncertain post-event information. / Fuentes-Andino, Diana; Beven, Keith; Halldin, Sven et al.
In: Hydrology and Earth System Sciences, Vol. 21, No. 7, 17.07.2017, p. 3597-3618.

Research output: Contribution to Journal/MagazineJournal articlepeer-review

Harvard

Fuentes-Andino, D, Beven, K, Halldin, S, Xu, C-Y, Reynolds, JE & Di Baldassarre, G 2017, 'Reproducing an extreme flood with uncertain post-event information', Hydrology and Earth System Sciences, vol. 21, no. 7, pp. 3597-3618. https://doi.org/10.5194/hess-21-3597-2017

APA

Fuentes-Andino, D., Beven, K., Halldin, S., Xu, C-Y., Reynolds, J. E., & Di Baldassarre, G. (2017). Reproducing an extreme flood with uncertain post-event information. Hydrology and Earth System Sciences, 21(7), 3597-3618. https://doi.org/10.5194/hess-21-3597-2017

Vancouver

Fuentes-Andino D, Beven K, Halldin S, Xu C-Y, Reynolds JE, Di Baldassarre G. Reproducing an extreme flood with uncertain post-event information. Hydrology and Earth System Sciences. 2017 Jul 17;21(7):3597-3618. doi: 10.5194/hess-21-3597-2017

Author

Fuentes-Andino, Diana ; Beven, Keith ; Halldin, Sven et al. / Reproducing an extreme flood with uncertain post-event information. In: Hydrology and Earth System Sciences. 2017 ; Vol. 21, No. 7. pp. 3597-3618.

Bibtex

@article{c713b703977143bd9eef06cd6a8c0a9c,
title = "Reproducing an extreme flood with uncertain post-event information",
abstract = "Studies for the prevention and mitigation of floods require information on discharge and extent of inundation, commonly unavailable or uncertain, especially during extreme events. This study was initiated by the devastating flood in Tegucigalpa, the capital of Honduras, when Hurricane Mitch struck the city. In this study we hypothesized that it is possible to estimate, in a trustworthy way considering large data uncertainties, this extreme 1998 flood discharge and the extent of the inundations that followed from a combination of models and post-event measured data. Postevent data collected in 2000 and 2001 were used to estimate discharge peaks, times of peak, and high-water marks. These data were used in combination with rain data from two gauges to drive and constrain a combination of well-known modelling tools: TOPMODEL, Muskingum-Cunge-Todini routing, and the LISFLOOD-FP hydraulic model. Simulations were performed within the generalized likelihood uncertainty estimation (GLUE) uncertainty-analysis framework. The model combination predicted peak discharge, times of peaks, and more than 90% of the observed highwater marks within the uncertainty bounds of the evaluation data. This allowed an inundation likelihood map to be produced. Observed high-water marks could not be reproduced at a few locations on the floodplain. Identifications of these locations are useful to improve model set-up, model structure, or post-event data-estimation methods. Rainfall data were of central importance in simulating the times of peak and results would be improved by a better spatial assessment of rainfall, e. g. from radar data or a denser rain-gauge net-work. Our study demonstrated that it was possible, considering the uncertainty in the post-event data, to reasonably reproduce the extreme Mitch flood in Tegucigalpa in spite of no hydrometric gauging during the event. The method proposed here can be part of a Bayesian framework in which more events can be added into the analysis as they become available.",
keywords = "GLOBAL SENSITIVITY-ANALYSIS, FLASH FLOODS, INUNDATION PROBABILITIES, MODELS, CALIBRATION, 1D, PREDICTIONS, DISCHARGES, PARAMETERS, MANAGEMENT",
author = "Diana Fuentes-Andino and Keith Beven and Sven Halldin and Chong-Yu Xu and Reynolds, {Jose Eduardo} and {Di Baldassarre}, Giuliano",
year = "2017",
month = jul,
day = "17",
doi = "10.5194/hess-21-3597-2017",
language = "English",
volume = "21",
pages = "3597--3618",
journal = "Hydrology and Earth System Sciences",
issn = "1027-5606",
publisher = "Copernicus Gesellschaft mbH",
number = "7",

}

RIS

TY - JOUR

T1 - Reproducing an extreme flood with uncertain post-event information

AU - Fuentes-Andino, Diana

AU - Beven, Keith

AU - Halldin, Sven

AU - Xu, Chong-Yu

AU - Reynolds, Jose Eduardo

AU - Di Baldassarre, Giuliano

PY - 2017/7/17

Y1 - 2017/7/17

N2 - Studies for the prevention and mitigation of floods require information on discharge and extent of inundation, commonly unavailable or uncertain, especially during extreme events. This study was initiated by the devastating flood in Tegucigalpa, the capital of Honduras, when Hurricane Mitch struck the city. In this study we hypothesized that it is possible to estimate, in a trustworthy way considering large data uncertainties, this extreme 1998 flood discharge and the extent of the inundations that followed from a combination of models and post-event measured data. Postevent data collected in 2000 and 2001 were used to estimate discharge peaks, times of peak, and high-water marks. These data were used in combination with rain data from two gauges to drive and constrain a combination of well-known modelling tools: TOPMODEL, Muskingum-Cunge-Todini routing, and the LISFLOOD-FP hydraulic model. Simulations were performed within the generalized likelihood uncertainty estimation (GLUE) uncertainty-analysis framework. The model combination predicted peak discharge, times of peaks, and more than 90% of the observed highwater marks within the uncertainty bounds of the evaluation data. This allowed an inundation likelihood map to be produced. Observed high-water marks could not be reproduced at a few locations on the floodplain. Identifications of these locations are useful to improve model set-up, model structure, or post-event data-estimation methods. Rainfall data were of central importance in simulating the times of peak and results would be improved by a better spatial assessment of rainfall, e. g. from radar data or a denser rain-gauge net-work. Our study demonstrated that it was possible, considering the uncertainty in the post-event data, to reasonably reproduce the extreme Mitch flood in Tegucigalpa in spite of no hydrometric gauging during the event. The method proposed here can be part of a Bayesian framework in which more events can be added into the analysis as they become available.

AB - Studies for the prevention and mitigation of floods require information on discharge and extent of inundation, commonly unavailable or uncertain, especially during extreme events. This study was initiated by the devastating flood in Tegucigalpa, the capital of Honduras, when Hurricane Mitch struck the city. In this study we hypothesized that it is possible to estimate, in a trustworthy way considering large data uncertainties, this extreme 1998 flood discharge and the extent of the inundations that followed from a combination of models and post-event measured data. Postevent data collected in 2000 and 2001 were used to estimate discharge peaks, times of peak, and high-water marks. These data were used in combination with rain data from two gauges to drive and constrain a combination of well-known modelling tools: TOPMODEL, Muskingum-Cunge-Todini routing, and the LISFLOOD-FP hydraulic model. Simulations were performed within the generalized likelihood uncertainty estimation (GLUE) uncertainty-analysis framework. The model combination predicted peak discharge, times of peaks, and more than 90% of the observed highwater marks within the uncertainty bounds of the evaluation data. This allowed an inundation likelihood map to be produced. Observed high-water marks could not be reproduced at a few locations on the floodplain. Identifications of these locations are useful to improve model set-up, model structure, or post-event data-estimation methods. Rainfall data were of central importance in simulating the times of peak and results would be improved by a better spatial assessment of rainfall, e. g. from radar data or a denser rain-gauge net-work. Our study demonstrated that it was possible, considering the uncertainty in the post-event data, to reasonably reproduce the extreme Mitch flood in Tegucigalpa in spite of no hydrometric gauging during the event. The method proposed here can be part of a Bayesian framework in which more events can be added into the analysis as they become available.

KW - GLOBAL SENSITIVITY-ANALYSIS

KW - FLASH FLOODS

KW - INUNDATION PROBABILITIES

KW - MODELS

KW - CALIBRATION

KW - 1D

KW - PREDICTIONS

KW - DISCHARGES

KW - PARAMETERS

KW - MANAGEMENT

U2 - 10.5194/hess-21-3597-2017

DO - 10.5194/hess-21-3597-2017

M3 - Journal article

VL - 21

SP - 3597

EP - 3618

JO - Hydrology and Earth System Sciences

JF - Hydrology and Earth System Sciences

SN - 1027-5606

IS - 7

ER -