Rights statement: This is the author’s version of a work that was accepted for publication in Environment International. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Environment International, 91, 2016 DOI: 10.1016/j.envint.2016.02.020
Accepted author manuscript, 3.13 MB, PDF document
Available under license: CC BY-NC-ND: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
Final published version
Research output: Contribution to Journal/Magazine › Journal article › peer-review
Risk assessment and source identification of perfluoroalkyl acids in surface and ground water : spatial distribution around a mega-fluorochemical industrial park, China. / Liu, Zhaoyang; Lu, Yonglong; Wang, Tieyu et al.
In: Environment International, Vol. 91, 05.2016, p. 69-77.Research output: Contribution to Journal/Magazine › Journal article › peer-review
}
TY - JOUR
T1 - Risk assessment and source identification of perfluoroalkyl acids in surface and ground water
T2 - spatial distribution around a mega-fluorochemical industrial park, China
AU - Liu, Zhaoyang
AU - Lu, Yonglong
AU - Wang, Tieyu
AU - Wang, Pei
AU - Li, Qifeng
AU - Johnson, Andrew C.
AU - Sarvajayakesavalu, Surianarayanan
AU - Sweetman, Andrew James
N1 - This is the author’s version of a work that was accepted for publication in Environment International. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Environment International, 91, 2016 DOI: 10.1016/j.envint.2016.02.020
PY - 2016/5
Y1 - 2016/5
N2 - Perfluoroalkyl acids (PFAAs) can be released to water bodies during manufacturing and application of PFAA-containing products. In this study, the contamination pattern, attenuation dynamics, sources, pathways, and risk zoning of PFAAs in surface and ground water was examined within a 10 km radius from a mega-fluorochemical industrial park (FIP). Among 12 detected PFAAs, perfluorooctanoic acid (PFOA) dominated, followed by shorter-chained perfluoroalkyl carboxylic acids (PFCAs). PFAA-containing waste was discharged from the FIP, with levels reaching 1.86 mg/L in the nearby rivers flowing to the Bohai sea together with up to 273 μg/L in the local groundwater in the catchment. These levels constitute a human health risks for PFOA and other shorter-chained PFCAs within this location. The concentrations of ∑ PFAAs in surface water strongly correlated with the local groundwater. The dominant pollution pathways of PFAAs included (i) discharge into surface water then to groundwater through seepage, and (ii) atmospheric deposition from the FIP, followed by infiltration to groundwater. As the distance increased from the source, PFAAs levels in groundwater showed a sharp initial decrease followed by a gentle decline. The contamination signal from the FIP site on PFAAs in groundwater existed within a radius of 4 km, and at least 3 km from the polluted Dongzhulong River. The major controlling factor in PFAA attenuation processes was likely to be dilution together with dispersion and adsorption to aquifer solids. The relative abundance of PFOA (C8) declined while those of shorter-chained PFCAs (C4–C6) increased during surface water seepage and further dispersion in groundwater.
AB - Perfluoroalkyl acids (PFAAs) can be released to water bodies during manufacturing and application of PFAA-containing products. In this study, the contamination pattern, attenuation dynamics, sources, pathways, and risk zoning of PFAAs in surface and ground water was examined within a 10 km radius from a mega-fluorochemical industrial park (FIP). Among 12 detected PFAAs, perfluorooctanoic acid (PFOA) dominated, followed by shorter-chained perfluoroalkyl carboxylic acids (PFCAs). PFAA-containing waste was discharged from the FIP, with levels reaching 1.86 mg/L in the nearby rivers flowing to the Bohai sea together with up to 273 μg/L in the local groundwater in the catchment. These levels constitute a human health risks for PFOA and other shorter-chained PFCAs within this location. The concentrations of ∑ PFAAs in surface water strongly correlated with the local groundwater. The dominant pollution pathways of PFAAs included (i) discharge into surface water then to groundwater through seepage, and (ii) atmospheric deposition from the FIP, followed by infiltration to groundwater. As the distance increased from the source, PFAAs levels in groundwater showed a sharp initial decrease followed by a gentle decline. The contamination signal from the FIP site on PFAAs in groundwater existed within a radius of 4 km, and at least 3 km from the polluted Dongzhulong River. The major controlling factor in PFAA attenuation processes was likely to be dilution together with dispersion and adsorption to aquifer solids. The relative abundance of PFOA (C8) declined while those of shorter-chained PFCAs (C4–C6) increased during surface water seepage and further dispersion in groundwater.
KW - PFAAs
KW - Fluorochemical industrial park
KW - Transport
KW - Attenuation
KW - Risk
U2 - 10.1016/j.envint.2016.02.020
DO - 10.1016/j.envint.2016.02.020
M3 - Journal article
VL - 91
SP - 69
EP - 77
JO - Environment International
JF - Environment International
SN - 0160-4120
ER -