Home > Research > Publications & Outputs > Robust maximum likelihood estimation of latent ...

Electronic data

  • robustLCA

    Accepted author manuscript, 6.04 MB, PDF document

View graph of relations

Robust maximum likelihood estimation of latent class models

Research output: Contribution in Book/Report/Proceedings - With ISBN/ISSNConference contribution/Paperpeer-review

Published

Standard

Robust maximum likelihood estimation of latent class models. / Bartolucci, Francesco; Francis, Brian; Pandolfi, Silvia; Pennoni, Fulvia.

Proceedings of the 30th International Workshop on Statistical Modelling: Proceedings Volume 1. ed. / Herwig Friedl; Helga Wagner. Linz, Austria : johannes Kepler University, Linz, 2015. p. 94-99.

Research output: Contribution in Book/Report/Proceedings - With ISBN/ISSNConference contribution/Paperpeer-review

Harvard

Bartolucci, F, Francis, B, Pandolfi, S & Pennoni, F 2015, Robust maximum likelihood estimation of latent class models. in H Friedl & H Wagner (eds), Proceedings of the 30th International Workshop on Statistical Modelling: Proceedings Volume 1. johannes Kepler University, Linz, Linz, Austria, pp. 94-99.

APA

Bartolucci, F., Francis, B., Pandolfi, S., & Pennoni, F. (2015). Robust maximum likelihood estimation of latent class models. In H. Friedl, & H. Wagner (Eds.), Proceedings of the 30th International Workshop on Statistical Modelling: Proceedings Volume 1 (pp. 94-99). johannes Kepler University, Linz.

Vancouver

Bartolucci F, Francis B, Pandolfi S, Pennoni F. Robust maximum likelihood estimation of latent class models. In Friedl H, Wagner H, editors, Proceedings of the 30th International Workshop on Statistical Modelling: Proceedings Volume 1. Linz, Austria: johannes Kepler University, Linz. 2015. p. 94-99

Author

Bartolucci, Francesco ; Francis, Brian ; Pandolfi, Silvia ; Pennoni, Fulvia. / Robust maximum likelihood estimation of latent class models. Proceedings of the 30th International Workshop on Statistical Modelling: Proceedings Volume 1. editor / Herwig Friedl ; Helga Wagner. Linz, Austria : johannes Kepler University, Linz, 2015. pp. 94-99

Bibtex

@inproceedings{dfb2716551524c609c33f6ebede97add,
title = "Robust maximum likelihood estimation of latent class models",
abstract = "We develop a suitable reweighting approach to deal with outliers when maximum likelihood estimation is used to estimate latent class models. In such a context, the EM algorithm is used and the presence of outliers and spurious observations is common. The Proposed method is motivated by an application aimed at finding clusters of offending behaviours.",
author = "Francesco Bartolucci and Brian Francis and Silvia Pandolfi and Fulvia Pennoni",
year = "2015",
month = jul,
language = "English",
pages = "94--99",
editor = "Herwig Friedl and Wagner, {Helga }",
booktitle = "Proceedings of the 30th International Workshop on Statistical Modelling",
publisher = "johannes Kepler University, Linz",

}

RIS

TY - GEN

T1 - Robust maximum likelihood estimation of latent class models

AU - Bartolucci, Francesco

AU - Francis, Brian

AU - Pandolfi, Silvia

AU - Pennoni, Fulvia

PY - 2015/7

Y1 - 2015/7

N2 - We develop a suitable reweighting approach to deal with outliers when maximum likelihood estimation is used to estimate latent class models. In such a context, the EM algorithm is used and the presence of outliers and spurious observations is common. The Proposed method is motivated by an application aimed at finding clusters of offending behaviours.

AB - We develop a suitable reweighting approach to deal with outliers when maximum likelihood estimation is used to estimate latent class models. In such a context, the EM algorithm is used and the presence of outliers and spurious observations is common. The Proposed method is motivated by an application aimed at finding clusters of offending behaviours.

M3 - Conference contribution/Paper

SP - 94

EP - 99

BT - Proceedings of the 30th International Workshop on Statistical Modelling

A2 - Friedl, Herwig

A2 - Wagner, Helga

PB - johannes Kepler University, Linz

CY - Linz, Austria

ER -