Home > Research > Publications & Outputs > Robust Quantization for General Similarity Search

Associated organisational unit

Electronic data

  • TIP-GUO-FINAL

    Rights statement: ©2017 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

    Accepted author manuscript, 570 KB, PDF document

    Available under license: CC BY-NC: Creative Commons Attribution-NonCommercial 4.0 International License

Links

Text available via DOI:

View graph of relations

Robust Quantization for General Similarity Search

Research output: Contribution to Journal/MagazineJournal articlepeer-review

Published
Close
<mark>Journal publication date</mark>1/02/2018
<mark>Journal</mark>IEEE Transactions on Image Processing
Issue number2
Volume27
Number of pages15
Pages (from-to)949-963
Publication StatusPublished
Early online date25/10/17
<mark>Original language</mark>English

Abstract

The recent years have witnessed the emerging of vector quantization (VQ) techniques for efficient similarity search. VQ partitions the feature space into a set of codewords and encodes data points as integer indices using the codewords. Then the distance between data points can be efficiently approximated by simple memory lookup operations. By the compact quantization, the storage cost and searching complexity are significantly reduced, thereby facilitating efficient large-scale similarity search. However, the performance of several celebrated VQ approaches degrades significantly when dealing with noisy data. Additionally, it can barely facilitate a wide range of applications as the distortion measurement only limits to ℓ2 norm. To address the shortcomings of the squared Euclidean (ℓ2,2 norm) loss function employed by the VQ approaches, in this paper, we propose a novel robust and general VQ framework, named RGVQ, to enhance both robustness and generalization of VQ approaches. Specifically, a ℓp,q-norm loss function is proposed to conduct the ℓp-norm similarity search, rather than the ℓ2 norm search, and the q-th order loss is used to enhance the robustness. Despite the fact that changing the loss function to ℓp,q norm makes VQ approaches more robust and generic, it brings us a challenge that a non-smooth and non-convex orthogonality constrained ℓp,q- norm function has to be minimized. To solve this problem, we propose a novel and efficient optimization scheme and specify it to VQ approaches and theoretically prove its convergence. Extensive experiments on benchmark datasets demonstrate that the proposed RGVQ is better than the original VQ for several approaches, especially when searching similarity in noisy data.

Bibliographic note

©2017 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.