Final published version
Licence: CC BY: Creative Commons Attribution 4.0 International License
Research output: Contribution to Journal/Magazine › Journal article › peer-review
Research output: Contribution to Journal/Magazine › Journal article › peer-review
}
TY - JOUR
T1 - Search for a new Z′ gauge boson in 4μ events with the ATLAS experiment
AU - The ATLAS collaboration
AU - Barton, A.E.
AU - Bertram, I.A.
AU - Borissov, G.
AU - Bouhova-Thacker, E.V.
AU - Ferrando, James
AU - Fox, H.
AU - Henderson, R.C.W.
AU - Jones, R.W.L.
AU - Kartvelishvili, V.
AU - Love, P.A.
AU - Meng, L.
AU - Muenstermann, D.
AU - Rybacki, K.
AU - Smizanska, M.
AU - Spinali, S.
AU - Wharton, A.M.
AU - Yexley, Melissa
PY - 2023/7/12
Y1 - 2023/7/12
N2 - This paper presents a search for a new Z′ vector gauge boson with the ATLAS experiment at the Large Hadron Collider using pp collision data collected at s = 13 TeV, corresponding to an integrated luminosity of 139 fb −1. The new gauge boson Z′ is predicted by L μ − L τ models to address observed phenomena that can not be explained by the Standard Model. The search examines the four-muon (4μ) final state, using a deep learning neural network classifier to separate the Z′ signal from the Standard Model background events. The di-muon invariant masses in the 4μ events are used to extract the Z′ resonance signature. No significant excess of events is observed over the predicted background. Upper limits at a 95% confidence level on the Z′ production cross-section times the decay branching fraction of pp → Z′μμ → 4μ are set from 0.31 to 4.3 fb for the Z′ mass ranging from 5 to 81 GeV. The corresponding common coupling strengths, g Z′, of the Z′ boson to the second and third generation leptons above 0.003 – 0.2 have been excluded. [Figure not available: see fulltext.].
AB - This paper presents a search for a new Z′ vector gauge boson with the ATLAS experiment at the Large Hadron Collider using pp collision data collected at s = 13 TeV, corresponding to an integrated luminosity of 139 fb −1. The new gauge boson Z′ is predicted by L μ − L τ models to address observed phenomena that can not be explained by the Standard Model. The search examines the four-muon (4μ) final state, using a deep learning neural network classifier to separate the Z′ signal from the Standard Model background events. The di-muon invariant masses in the 4μ events are used to extract the Z′ resonance signature. No significant excess of events is observed over the predicted background. Upper limits at a 95% confidence level on the Z′ production cross-section times the decay branching fraction of pp → Z′μμ → 4μ are set from 0.31 to 4.3 fb for the Z′ mass ranging from 5 to 81 GeV. The corresponding common coupling strengths, g Z′, of the Z′ boson to the second and third generation leptons above 0.003 – 0.2 have been excluded. [Figure not available: see fulltext.].
KW - Beyond Standard Model
KW - Hadron-Hadron Scattering
U2 - 10.1007/JHEP07(2023)090
DO - 10.1007/JHEP07(2023)090
M3 - Journal article
VL - 2023
JO - Journal of High Energy Physics
JF - Journal of High Energy Physics
SN - 1029-8479
IS - 7
M1 - 90
ER -