Final published version
Licence: CC BY: Creative Commons Attribution 4.0 International License
Research output: Contribution to Journal/Magazine › Journal article › peer-review
Research output: Contribution to Journal/Magazine › Journal article › peer-review
}
TY - JOUR
T1 - Search for dark matter produced in association with bottom or top quarks in √s=13 TeV pp collisions with the ATLAS detector
AU - Barton, Adam Edward
AU - Beattie, Michael
AU - Bertram, Iain Alexander
AU - Borissov, Guennadi
AU - Bouhova-Thacker, Evelina Vassileva
AU - Fox, Harald
AU - Grimm, Kathryn Ann Tschann
AU - Henderson, Robert Charles William
AU - Jones, Roger William Lewis
AU - Kartvelishvili, Vakhtang
AU - Long, Robin Eamonn
AU - Love, Peter Allan
AU - Muenstermann, Daniel Matthias Alfred
AU - Parker, Adam Jackson
AU - Skinner, Malcolm
AU - Smizanska, Maria
AU - Walder, James William
AU - Wharton, Andy
AU - Whitmore, Ben
AU - The ATLAS collaboration
PY - 2018/1/11
Y1 - 2018/1/11
N2 - A search for weakly interacting massive dark-matter particles produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and missing transverse momentum are considered. The analysis uses 36.1fb−1 of proton–proton collision data recorded by the ATLAS experiment at √s=13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are interpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour-neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross-section of 300 times the predicted rate for mediators with masses between 10 and 50GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour-charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV , mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements.
AB - A search for weakly interacting massive dark-matter particles produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and missing transverse momentum are considered. The analysis uses 36.1fb−1 of proton–proton collision data recorded by the ATLAS experiment at √s=13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are interpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour-neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross-section of 300 times the predicted rate for mediators with masses between 10 and 50GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour-charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV , mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements.
U2 - 10.1140/epjc/s10052-017-5486-1
DO - 10.1140/epjc/s10052-017-5486-1
M3 - Journal article
VL - 78
JO - European Physical Journal C: Particles and Fields
JF - European Physical Journal C: Particles and Fields
SN - 1434-6044
IS - 1
M1 - 18
ER -