Home > Research > Publications & Outputs > Search for electroweak production of supersymme...

Links

Text available via DOI:

View graph of relations

Search for electroweak production of supersymmetric states in scenarios with compressed mass spectra at √s=13 TeV with the ATLAS detector

Research output: Contribution to Journal/MagazineJournal articlepeer-review

Published

Standard

Search for electroweak production of supersymmetric states in scenarios with compressed mass spectra at √s=13 TeV with the ATLAS detector. / The ATLAS collaboration.
In: Physical Review D, Vol. 97, No. 5, 052010, 27.03.2018.

Research output: Contribution to Journal/MagazineJournal articlepeer-review

Harvard

APA

Vancouver

The ATLAS collaboration. Search for electroweak production of supersymmetric states in scenarios with compressed mass spectra at √s=13 TeV with the ATLAS detector. Physical Review D. 2018 Mar 27;97(5):052010. doi: 10.1103/PhysRevD.97.052010

Author

Bibtex

@article{79dff893b63641df9bf3b21313f0972f,
title = "Search for electroweak production of supersymmetric states in scenarios with compressed mass spectra at √s=13 TeV with the ATLAS detector",
abstract = "A search for electroweak production of supersymmetric particles in scenarios with compressed mass spectra in final states with two low-momentum leptons and missing transverse momentum is presented. This search uses proton-proton collision data recorded by the ATLAS detector at the Large Hadron Collider in 2015–2016, corresponding to 36.1 fb−1 of integrated luminosity at √s=13 TeV. Events with same-flavor pairs of electrons or muons with opposite electric charge are selected. The data are found to be consistent with the Standard Model prediction. Results are interpreted using simplified models of R-parity-conserving supersymmetry in which there is a small mass difference between the masses of the produced supersymmetric particles and the lightest neutralino. Exclusion limits at 95% confidence level are set on next-to-lightest neutralino masses of up to 145 GeV for Higgsino production and 175 GeV for wino production, and slepton masses of up to 190 GeV for pair production of sleptons. In the compressed mass regime, the exclusion limits extend down to mass splittings of 2.5 GeV for Higgsino production, 2 GeV for wino production, and 1 GeV for slepton production. The results are also interpreted in the context of a radiatively-driven natural supersymmetry model with nonuniversal Higgs boson masses.",
author = "Barton, {Adam Edward} and Michael Beattie and Bertram, {Iain Alexander} and Guennadi Borissov and Bouhova-Thacker, {Evelina Vassileva} and Harald Fox and Henderson, {Robert Charles William} and Jones, {Roger William Lewis} and Vakhtang Kartvelishvili and Long, {Robin Eamonn} and Love, {Peter Allan} and Muenstermann, {Daniel Matthias Alfred} and Parker, {Adam Jackson} and Malcolm Skinner and Maria Smizanska and Walder, {James William} and Wharton, {Andrew Mark} and Ben Whitmore and {The ATLAS collaboration}",
year = "2018",
month = mar,
day = "27",
doi = "10.1103/PhysRevD.97.052010",
language = "English",
volume = "97",
journal = "Physical Review D",
issn = "1550-7998",
publisher = "American Physical Society",
number = "5",

}

RIS

TY - JOUR

T1 - Search for electroweak production of supersymmetric states in scenarios with compressed mass spectra at √s=13 TeV with the ATLAS detector

AU - Barton, Adam Edward

AU - Beattie, Michael

AU - Bertram, Iain Alexander

AU - Borissov, Guennadi

AU - Bouhova-Thacker, Evelina Vassileva

AU - Fox, Harald

AU - Henderson, Robert Charles William

AU - Jones, Roger William Lewis

AU - Kartvelishvili, Vakhtang

AU - Long, Robin Eamonn

AU - Love, Peter Allan

AU - Muenstermann, Daniel Matthias Alfred

AU - Parker, Adam Jackson

AU - Skinner, Malcolm

AU - Smizanska, Maria

AU - Walder, James William

AU - Wharton, Andrew Mark

AU - Whitmore, Ben

AU - The ATLAS collaboration

PY - 2018/3/27

Y1 - 2018/3/27

N2 - A search for electroweak production of supersymmetric particles in scenarios with compressed mass spectra in final states with two low-momentum leptons and missing transverse momentum is presented. This search uses proton-proton collision data recorded by the ATLAS detector at the Large Hadron Collider in 2015–2016, corresponding to 36.1 fb−1 of integrated luminosity at √s=13 TeV. Events with same-flavor pairs of electrons or muons with opposite electric charge are selected. The data are found to be consistent with the Standard Model prediction. Results are interpreted using simplified models of R-parity-conserving supersymmetry in which there is a small mass difference between the masses of the produced supersymmetric particles and the lightest neutralino. Exclusion limits at 95% confidence level are set on next-to-lightest neutralino masses of up to 145 GeV for Higgsino production and 175 GeV for wino production, and slepton masses of up to 190 GeV for pair production of sleptons. In the compressed mass regime, the exclusion limits extend down to mass splittings of 2.5 GeV for Higgsino production, 2 GeV for wino production, and 1 GeV for slepton production. The results are also interpreted in the context of a radiatively-driven natural supersymmetry model with nonuniversal Higgs boson masses.

AB - A search for electroweak production of supersymmetric particles in scenarios with compressed mass spectra in final states with two low-momentum leptons and missing transverse momentum is presented. This search uses proton-proton collision data recorded by the ATLAS detector at the Large Hadron Collider in 2015–2016, corresponding to 36.1 fb−1 of integrated luminosity at √s=13 TeV. Events with same-flavor pairs of electrons or muons with opposite electric charge are selected. The data are found to be consistent with the Standard Model prediction. Results are interpreted using simplified models of R-parity-conserving supersymmetry in which there is a small mass difference between the masses of the produced supersymmetric particles and the lightest neutralino. Exclusion limits at 95% confidence level are set on next-to-lightest neutralino masses of up to 145 GeV for Higgsino production and 175 GeV for wino production, and slepton masses of up to 190 GeV for pair production of sleptons. In the compressed mass regime, the exclusion limits extend down to mass splittings of 2.5 GeV for Higgsino production, 2 GeV for wino production, and 1 GeV for slepton production. The results are also interpreted in the context of a radiatively-driven natural supersymmetry model with nonuniversal Higgs boson masses.

U2 - 10.1103/PhysRevD.97.052010

DO - 10.1103/PhysRevD.97.052010

M3 - Journal article

VL - 97

JO - Physical Review D

JF - Physical Review D

SN - 1550-7998

IS - 5

M1 - 052010

ER -