Final published version
Licence: CC BY: Creative Commons Attribution 4.0 International License
Research output: Contribution to Journal/Magazine › Journal article › peer-review
Research output: Contribution to Journal/Magazine › Journal article › peer-review
}
TY - JOUR
T1 - Search for electroweak production of supersymmetric states in scenarios with compressed mass spectra at √s=13 TeV with the ATLAS detector
AU - Barton, Adam Edward
AU - Beattie, Michael
AU - Bertram, Iain Alexander
AU - Borissov, Guennadi
AU - Bouhova-Thacker, Evelina Vassileva
AU - Fox, Harald
AU - Henderson, Robert Charles William
AU - Jones, Roger William Lewis
AU - Kartvelishvili, Vakhtang
AU - Long, Robin Eamonn
AU - Love, Peter Allan
AU - Muenstermann, Daniel Matthias Alfred
AU - Parker, Adam Jackson
AU - Skinner, Malcolm
AU - Smizanska, Maria
AU - Walder, James William
AU - Wharton, Andrew Mark
AU - Whitmore, Ben
AU - The ATLAS collaboration
PY - 2018/3/27
Y1 - 2018/3/27
N2 - A search for electroweak production of supersymmetric particles in scenarios with compressed mass spectra in final states with two low-momentum leptons and missing transverse momentum is presented. This search uses proton-proton collision data recorded by the ATLAS detector at the Large Hadron Collider in 2015–2016, corresponding to 36.1 fb−1 of integrated luminosity at √s=13 TeV. Events with same-flavor pairs of electrons or muons with opposite electric charge are selected. The data are found to be consistent with the Standard Model prediction. Results are interpreted using simplified models of R-parity-conserving supersymmetry in which there is a small mass difference between the masses of the produced supersymmetric particles and the lightest neutralino. Exclusion limits at 95% confidence level are set on next-to-lightest neutralino masses of up to 145 GeV for Higgsino production and 175 GeV for wino production, and slepton masses of up to 190 GeV for pair production of sleptons. In the compressed mass regime, the exclusion limits extend down to mass splittings of 2.5 GeV for Higgsino production, 2 GeV for wino production, and 1 GeV for slepton production. The results are also interpreted in the context of a radiatively-driven natural supersymmetry model with nonuniversal Higgs boson masses.
AB - A search for electroweak production of supersymmetric particles in scenarios with compressed mass spectra in final states with two low-momentum leptons and missing transverse momentum is presented. This search uses proton-proton collision data recorded by the ATLAS detector at the Large Hadron Collider in 2015–2016, corresponding to 36.1 fb−1 of integrated luminosity at √s=13 TeV. Events with same-flavor pairs of electrons or muons with opposite electric charge are selected. The data are found to be consistent with the Standard Model prediction. Results are interpreted using simplified models of R-parity-conserving supersymmetry in which there is a small mass difference between the masses of the produced supersymmetric particles and the lightest neutralino. Exclusion limits at 95% confidence level are set on next-to-lightest neutralino masses of up to 145 GeV for Higgsino production and 175 GeV for wino production, and slepton masses of up to 190 GeV for pair production of sleptons. In the compressed mass regime, the exclusion limits extend down to mass splittings of 2.5 GeV for Higgsino production, 2 GeV for wino production, and 1 GeV for slepton production. The results are also interpreted in the context of a radiatively-driven natural supersymmetry model with nonuniversal Higgs boson masses.
U2 - 10.1103/PhysRevD.97.052010
DO - 10.1103/PhysRevD.97.052010
M3 - Journal article
VL - 97
JO - Physical Review D
JF - Physical Review D
SN - 1550-7998
IS - 5
M1 - 052010
ER -